Metamath Proof Explorer


Theorem infxrpnf

Description: Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion infxrpnf A*supA+∞*<=supA*<

Proof

Step Hyp Ref Expression
1 id A*A*
2 pnfxr +∞*
3 snssi +∞*+∞*
4 2 3 ax-mp +∞*
5 4 a1i A*+∞*
6 1 5 unssd A*A+∞*
7 6 infxrcld A*supA+∞*<*
8 infxrcl A*supA*<*
9 ssun1 AA+∞
10 9 a1i A*AA+∞
11 infxrss AA+∞A+∞*supA+∞*<supA*<
12 10 6 11 syl2anc A*supA+∞*<supA*<
13 infeq1 A=supA*<=sup*<
14 xrinf0 sup*<=+∞
15 14 2 eqeltri sup*<*
16 15 a1i A=sup*<*
17 13 16 eqeltrd A=supA*<*
18 xrltso <Or*
19 infsn <Or*+∞*sup+∞*<=+∞
20 18 2 19 mp2an sup+∞*<=+∞
21 20 eqcomi +∞=sup+∞*<
22 21 a1i A=+∞=sup+∞*<
23 13 14 eqtrdi A=supA*<=+∞
24 uneq1 A=A+∞=+∞
25 0un +∞=+∞
26 25 a1i A=+∞=+∞
27 24 26 eqtrd A=A+∞=+∞
28 27 infeq1d A=supA+∞*<=sup+∞*<
29 22 23 28 3eqtr4d A=supA*<=supA+∞*<
30 17 29 xreqled A=supA*<supA+∞*<
31 30 adantl A*A=supA*<supA+∞*<
32 neqne ¬A=A
33 nfv xA*A
34 nfv yA*A
35 simpl A*AA*
36 35 6 syl A*AA+∞*
37 simpr A*xAxA
38 ssel2 A*xAx*
39 38 xrleidd A*xAxx
40 breq1 y=xyxxx
41 40 rspcev xAxxyAyx
42 37 39 41 syl2anc A*xAyAyx
43 42 ad4ant14 A*AxA+∞xAyAyx
44 simpll A*AxA+∞¬xAA*A
45 elunnel1 xA+∞¬xAx+∞
46 elsni x+∞x=+∞
47 45 46 syl xA+∞¬xAx=+∞
48 47 adantll A*AxA+∞¬xAx=+∞
49 simplr A*Ax=+∞A
50 ssel2 A*yAy*
51 pnfge y*y+∞
52 50 51 syl A*yAy+∞
53 52 adantlr A*x=+∞yAy+∞
54 simplr A*x=+∞yAx=+∞
55 53 54 breqtrrd A*x=+∞yAyx
56 55 ralrimiva A*x=+∞yAyx
57 56 adantlr A*Ax=+∞yAyx
58 r19.2z AyAyxyAyx
59 49 57 58 syl2anc A*Ax=+∞yAyx
60 44 48 59 syl2anc A*AxA+∞¬xAyAyx
61 43 60 pm2.61dan A*AxA+∞yAyx
62 33 34 35 36 61 infleinf2 A*AsupA*<supA+∞*<
63 32 62 sylan2 A*¬A=supA*<supA+∞*<
64 31 63 pm2.61dan A*supA*<supA+∞*<
65 7 8 12 64 xrletrid A*supA+∞*<=supA*<