Metamath Proof Explorer


Theorem iooiinicc

Description: A closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iooiinicc.a φA
iooiinicc.b φB
Assertion iooiinicc φnA1nB+1n=AB

Proof

Step Hyp Ref Expression
1 iooiinicc.a φA
2 iooiinicc.b φB
3 1 adantr φxnA1nB+1nA
4 2 adantr φxnA1nB+1nB
5 1nn 1
6 ioossre A11B+11
7 oveq2 n=11n=11
8 7 oveq2d n=1A1n=A11
9 7 oveq2d n=1B+1n=B+11
10 8 9 oveq12d n=1A1nB+1n=A11B+11
11 10 sseq1d n=1A1nB+1nA11B+11
12 11 rspcev 1A11B+11nA1nB+1n
13 5 6 12 mp2an nA1nB+1n
14 iinss nA1nB+1nnA1nB+1n
15 13 14 ax-mp nA1nB+1n
16 15 a1i φxnA1nB+1nnA1nB+1n
17 simpr φxnA1nB+1nxnA1nB+1n
18 16 17 sseldd φxnA1nB+1nx
19 nfv nφ
20 nfcv _nx
21 nfii1 _nnA1nB+1n
22 20 21 nfel nxnA1nB+1n
23 19 22 nfan nφxnA1nB+1n
24 simpll φxnA1nB+1nnφ
25 iinss2 nnA1nB+1nA1nB+1n
26 25 adantl xnA1nB+1nnnA1nB+1nA1nB+1n
27 simpl xnA1nB+1nnxnA1nB+1n
28 26 27 sseldd xnA1nB+1nnxA1nB+1n
29 28 adantll φxnA1nB+1nnxA1nB+1n
30 simpr φxnA1nB+1nnn
31 1 adantr φnA
32 31 adantlr φxA1nB+1nnA
33 elioore xA1nB+1nx
34 33 adantr xA1nB+1nnx
35 nnrecre n1n
36 35 adantl xA1nB+1nn1n
37 34 36 readdcld xA1nB+1nnx+1n
38 37 adantll φxA1nB+1nnx+1n
39 35 adantl φn1n
40 31 39 resubcld φnA1n
41 40 rexrd φnA1n*
42 41 adantlr φxA1nB+1nnA1n*
43 2 adantr φnB
44 43 39 readdcld φnB+1n
45 44 rexrd φnB+1n*
46 45 adantlr φxA1nB+1nnB+1n*
47 simplr φxA1nB+1nnxA1nB+1n
48 ioogtlb A1n*B+1n*xA1nB+1nA1n<x
49 42 46 47 48 syl3anc φxA1nB+1nnA1n<x
50 35 adantl φxA1nB+1nn1n
51 34 adantll φxA1nB+1nnx
52 32 50 51 ltsubaddd φxA1nB+1nnA1n<xA<x+1n
53 49 52 mpbid φxA1nB+1nnA<x+1n
54 32 38 53 ltled φxA1nB+1nnAx+1n
55 24 29 30 54 syl21anc φxnA1nB+1nnAx+1n
56 55 ex φxnA1nB+1nnAx+1n
57 23 56 ralrimi φxnA1nB+1nnAx+1n
58 3 rexrd φxnA1nB+1nA*
59 23 58 18 xrralrecnnle φxnA1nB+1nAxnAx+1n
60 57 59 mpbird φxnA1nB+1nAx
61 44 adantlr φxA1nB+1nnB+1n
62 iooltub A1n*B+1n*xA1nB+1nx<B+1n
63 42 46 47 62 syl3anc φxA1nB+1nnx<B+1n
64 51 61 63 ltled φxA1nB+1nnxB+1n
65 24 29 30 64 syl21anc φxnA1nB+1nnxB+1n
66 65 ex φxnA1nB+1nnxB+1n
67 23 66 ralrimi φxnA1nB+1nnxB+1n
68 18 rexrd φxnA1nB+1nx*
69 23 68 4 xrralrecnnle φxnA1nB+1nxBnxB+1n
70 67 69 mpbird φxnA1nB+1nxB
71 3 4 18 60 70 eliccd φxnA1nB+1nxAB
72 71 ralrimiva φxnA1nB+1nxAB
73 dfss3 nA1nB+1nABxnA1nB+1nxAB
74 72 73 sylibr φnA1nB+1nAB
75 1rp 1+
76 75 a1i n1+
77 nnrp nn+
78 76 77 rpdivcld n1n+
79 78 adantl φn1n+
80 31 79 ltsubrpd φnA1n<A
81 43 79 ltaddrpd φnB<B+1n
82 iccssioo A1n*B+1n*A1n<AB<B+1nABA1nB+1n
83 41 45 80 81 82 syl22anc φnABA1nB+1n
84 83 ralrimiva φnABA1nB+1n
85 ssiin ABnA1nB+1nnABA1nB+1n
86 84 85 sylibr φABnA1nB+1n
87 74 86 eqssd φnA1nB+1n=AB