Metamath Proof Explorer


Theorem isarchi3

Description: This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses isarchi3.b B=BaseW
isarchi3.0 0˙=0W
isarchi3.i <˙=<W
isarchi3.x ·˙=W
Assertion isarchi3 WoGrpWArchixByB0˙<˙xny<˙n·˙x

Proof

Step Hyp Ref Expression
1 isarchi3.b B=BaseW
2 isarchi3.0 0˙=0W
3 isarchi3.i <˙=<W
4 isarchi3.x ·˙=W
5 isogrp WoGrpWGrpWoMnd
6 5 simprbi WoGrpWoMnd
7 omndtos WoMndWToset
8 6 7 syl WoGrpWToset
9 grpmnd WGrpWMnd
10 9 adantr WGrpWoMndWMnd
11 5 10 sylbi WoGrpWMnd
12 eqid W=W
13 1 2 4 12 3 isarchi2 WTosetWMndWArchixByB0˙<˙xnyWn·˙x
14 8 11 13 syl2anc WoGrpWArchixByB0˙<˙xnyWn·˙x
15 simpr WoGrpxByB0˙<˙xnn
16 15 adantr WoGrpxByB0˙<˙xnyWn·˙xn
17 16 peano2nnd WoGrpxByB0˙<˙xnyWn·˙xn+1
18 simp-4l WoGrpxByB0˙<˙xnWoGrp
19 18 adantr WoGrpxByB0˙<˙xnyWn·˙xWoGrp
20 ogrpgrp WoGrpWGrp
21 1 2 grpidcl WGrp0˙B
22 19 20 21 3syl WoGrpxByB0˙<˙xnyWn·˙x0˙B
23 simp-4r WoGrpxByB0˙<˙xnxB
24 23 adantr WoGrpxByB0˙<˙xnyWn·˙xxB
25 20 ad4antr WoGrpxByB0˙<˙xnWGrp
26 15 nnzd WoGrpxByB0˙<˙xnn
27 1 4 mulgcl WGrpnxBn·˙xB
28 25 26 23 27 syl3anc WoGrpxByB0˙<˙xnn·˙xB
29 28 adantr WoGrpxByB0˙<˙xnyWn·˙xn·˙xB
30 simpllr WoGrpxByB0˙<˙xnyWn·˙x0˙<˙x
31 eqid +W=+W
32 1 3 31 ogrpaddlt WoGrp0˙BxBn·˙xB0˙<˙x0˙+Wn·˙x<˙x+Wn·˙x
33 19 22 24 29 30 32 syl131anc WoGrpxByB0˙<˙xnyWn·˙x0˙+Wn·˙x<˙x+Wn·˙x
34 19 20 syl WoGrpxByB0˙<˙xnyWn·˙xWGrp
35 1 31 2 grplid WGrpn·˙xB0˙+Wn·˙x=n·˙x
36 34 29 35 syl2anc WoGrpxByB0˙<˙xnyWn·˙x0˙+Wn·˙x=n·˙x
37 nncn nn
38 ax-1cn 1
39 addcom n1n+1=1+n
40 37 38 39 sylancl nn+1=1+n
41 40 oveq1d nn+1·˙x=1+n·˙x
42 16 41 syl WoGrpxByB0˙<˙xnyWn·˙xn+1·˙x=1+n·˙x
43 grpsgrp Could not format ( W e. Grp -> W e. Smgrp ) : No typesetting found for |- ( W e. Grp -> W e. Smgrp ) with typecode |-
44 19 20 43 3syl Could not format ( ( ( ( ( ( W e. oGrp /\ x e. B ) /\ y e. B ) /\ .0. .< x ) /\ n e. NN ) /\ y ( le ` W ) ( n .x. x ) ) -> W e. Smgrp ) : No typesetting found for |- ( ( ( ( ( ( W e. oGrp /\ x e. B ) /\ y e. B ) /\ .0. .< x ) /\ n e. NN ) /\ y ( le ` W ) ( n .x. x ) ) -> W e. Smgrp ) with typecode |-
45 1nn 1
46 45 a1i WoGrpxByB0˙<˙xnyWn·˙x1
47 1 4 31 mulgnndir Could not format ( ( W e. Smgrp /\ ( 1 e. NN /\ n e. NN /\ x e. B ) ) -> ( ( 1 + n ) .x. x ) = ( ( 1 .x. x ) ( +g ` W ) ( n .x. x ) ) ) : No typesetting found for |- ( ( W e. Smgrp /\ ( 1 e. NN /\ n e. NN /\ x e. B ) ) -> ( ( 1 + n ) .x. x ) = ( ( 1 .x. x ) ( +g ` W ) ( n .x. x ) ) ) with typecode |-
48 44 46 16 24 47 syl13anc WoGrpxByB0˙<˙xnyWn·˙x1+n·˙x=1·˙x+Wn·˙x
49 1 4 mulg1 xB1·˙x=x
50 24 49 syl WoGrpxByB0˙<˙xnyWn·˙x1·˙x=x
51 50 oveq1d WoGrpxByB0˙<˙xnyWn·˙x1·˙x+Wn·˙x=x+Wn·˙x
52 42 48 51 3eqtrrd WoGrpxByB0˙<˙xnyWn·˙xx+Wn·˙x=n+1·˙x
53 33 36 52 3brtr3d WoGrpxByB0˙<˙xnyWn·˙xn·˙x<˙n+1·˙x
54 tospos WTosetWPoset
55 18 8 54 3syl WoGrpxByB0˙<˙xnWPoset
56 simpllr WoGrpxByB0˙<˙xnyB
57 26 peano2zd WoGrpxByB0˙<˙xnn+1
58 1 4 mulgcl WGrpn+1xBn+1·˙xB
59 25 57 23 58 syl3anc WoGrpxByB0˙<˙xnn+1·˙xB
60 1 12 3 plelttr WPosetyBn·˙xBn+1·˙xByWn·˙xn·˙x<˙n+1·˙xy<˙n+1·˙x
61 55 56 28 59 60 syl13anc WoGrpxByB0˙<˙xnyWn·˙xn·˙x<˙n+1·˙xy<˙n+1·˙x
62 61 impl WoGrpxByB0˙<˙xnyWn·˙xn·˙x<˙n+1·˙xy<˙n+1·˙x
63 53 62 mpdan WoGrpxByB0˙<˙xnyWn·˙xy<˙n+1·˙x
64 oveq1 m=n+1m·˙x=n+1·˙x
65 64 breq2d m=n+1y<˙m·˙xy<˙n+1·˙x
66 65 rspcev n+1y<˙n+1·˙xmy<˙m·˙x
67 17 63 66 syl2anc WoGrpxByB0˙<˙xnyWn·˙xmy<˙m·˙x
68 67 r19.29an WoGrpxByB0˙<˙xnyWn·˙xmy<˙m·˙x
69 oveq1 m=nm·˙x=n·˙x
70 69 breq2d m=ny<˙m·˙xy<˙n·˙x
71 70 cbvrexvw my<˙m·˙xny<˙n·˙x
72 68 71 sylib WoGrpxByB0˙<˙xnyWn·˙xny<˙n·˙x
73 12 3 pltle WoGrpyBn·˙xBy<˙n·˙xyWn·˙x
74 18 56 28 73 syl3anc WoGrpxByB0˙<˙xny<˙n·˙xyWn·˙x
75 74 reximdva WoGrpxByB0˙<˙xny<˙n·˙xnyWn·˙x
76 75 imp WoGrpxByB0˙<˙xny<˙n·˙xnyWn·˙x
77 72 76 impbida WoGrpxByB0˙<˙xnyWn·˙xny<˙n·˙x
78 77 pm5.74da WoGrpxByB0˙<˙xnyWn·˙x0˙<˙xny<˙n·˙x
79 78 ralbidva WoGrpxByB0˙<˙xnyWn·˙xyB0˙<˙xny<˙n·˙x
80 79 ralbidva WoGrpxByB0˙<˙xnyWn·˙xxByB0˙<˙xny<˙n·˙x
81 14 80 bitrd WoGrpWArchixByB0˙<˙xny<˙n·˙x