Description: This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isarchi3.b | |
|
isarchi3.0 | |
||
isarchi3.i | |
||
isarchi3.x | |
||
Assertion | isarchi3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isarchi3.b | |
|
2 | isarchi3.0 | |
|
3 | isarchi3.i | |
|
4 | isarchi3.x | |
|
5 | isogrp | |
|
6 | 5 | simprbi | |
7 | omndtos | |
|
8 | 6 7 | syl | |
9 | grpmnd | |
|
10 | 9 | adantr | |
11 | 5 10 | sylbi | |
12 | eqid | |
|
13 | 1 2 4 12 3 | isarchi2 | |
14 | 8 11 13 | syl2anc | |
15 | simpr | |
|
16 | 15 | adantr | |
17 | 16 | peano2nnd | |
18 | simp-4l | |
|
19 | 18 | adantr | |
20 | ogrpgrp | |
|
21 | 1 2 | grpidcl | |
22 | 19 20 21 | 3syl | |
23 | simp-4r | |
|
24 | 23 | adantr | |
25 | 20 | ad4antr | |
26 | 15 | nnzd | |
27 | 1 4 | mulgcl | |
28 | 25 26 23 27 | syl3anc | |
29 | 28 | adantr | |
30 | simpllr | |
|
31 | eqid | |
|
32 | 1 3 31 | ogrpaddlt | |
33 | 19 22 24 29 30 32 | syl131anc | |
34 | 19 20 | syl | |
35 | 1 31 2 | grplid | |
36 | 34 29 35 | syl2anc | |
37 | nncn | |
|
38 | ax-1cn | |
|
39 | addcom | |
|
40 | 37 38 39 | sylancl | |
41 | 40 | oveq1d | |
42 | 16 41 | syl | |
43 | grpsgrp | Could not format ( W e. Grp -> W e. Smgrp ) : No typesetting found for |- ( W e. Grp -> W e. Smgrp ) with typecode |- | |
44 | 19 20 43 | 3syl | Could not format ( ( ( ( ( ( W e. oGrp /\ x e. B ) /\ y e. B ) /\ .0. .< x ) /\ n e. NN ) /\ y ( le ` W ) ( n .x. x ) ) -> W e. Smgrp ) : No typesetting found for |- ( ( ( ( ( ( W e. oGrp /\ x e. B ) /\ y e. B ) /\ .0. .< x ) /\ n e. NN ) /\ y ( le ` W ) ( n .x. x ) ) -> W e. Smgrp ) with typecode |- |
45 | 1nn | |
|
46 | 45 | a1i | |
47 | 1 4 31 | mulgnndir | Could not format ( ( W e. Smgrp /\ ( 1 e. NN /\ n e. NN /\ x e. B ) ) -> ( ( 1 + n ) .x. x ) = ( ( 1 .x. x ) ( +g ` W ) ( n .x. x ) ) ) : No typesetting found for |- ( ( W e. Smgrp /\ ( 1 e. NN /\ n e. NN /\ x e. B ) ) -> ( ( 1 + n ) .x. x ) = ( ( 1 .x. x ) ( +g ` W ) ( n .x. x ) ) ) with typecode |- |
48 | 44 46 16 24 47 | syl13anc | |
49 | 1 4 | mulg1 | |
50 | 24 49 | syl | |
51 | 50 | oveq1d | |
52 | 42 48 51 | 3eqtrrd | |
53 | 33 36 52 | 3brtr3d | |
54 | tospos | |
|
55 | 18 8 54 | 3syl | |
56 | simpllr | |
|
57 | 26 | peano2zd | |
58 | 1 4 | mulgcl | |
59 | 25 57 23 58 | syl3anc | |
60 | 1 12 3 | plelttr | |
61 | 55 56 28 59 60 | syl13anc | |
62 | 61 | impl | |
63 | 53 62 | mpdan | |
64 | oveq1 | |
|
65 | 64 | breq2d | |
66 | 65 | rspcev | |
67 | 17 63 66 | syl2anc | |
68 | 67 | r19.29an | |
69 | oveq1 | |
|
70 | 69 | breq2d | |
71 | 70 | cbvrexvw | |
72 | 68 71 | sylib | |
73 | 12 3 | pltle | |
74 | 18 56 28 73 | syl3anc | |
75 | 74 | reximdva | |
76 | 75 | imp | |
77 | 72 76 | impbida | |
78 | 77 | pm5.74da | |
79 | 78 | ralbidva | |
80 | 79 | ralbidva | |
81 | 14 80 | bitrd | |