Metamath Proof Explorer


Theorem iscau2

Description: Express the property " F is a Cauchy sequence of metric D " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Nov-2013)

Ref Expression
Assertion iscau2 D∞MetXFCauDFX𝑝𝑚x+jkjkdomFFkXFkDFj<x

Proof

Step Hyp Ref Expression
1 iscau D∞MetXFCauDFX𝑝𝑚x+jFj:jFjballDx
2 elfvdm D∞MetXXdom∞Met
3 cnex V
4 elpmg Xdom∞MetVFX𝑝𝑚FunFF×X
5 2 3 4 sylancl D∞MetXFX𝑝𝑚FunFF×X
6 5 simprbda D∞MetXFX𝑝𝑚FunF
7 ffvresb FunFFj:jFjballDxkjkdomFFkFjballDx
8 6 7 syl D∞MetXFX𝑝𝑚Fj:jFjballDxkjkdomFFkFjballDx
9 8 rexbidv D∞MetXFX𝑝𝑚jFj:jFjballDxjkjkdomFFkFjballDx
10 9 adantr D∞MetXFX𝑝𝑚x+jFj:jFjballDxjkjkdomFFkFjballDx
11 uzid jjj
12 11 adantl D∞MetXx+jjj
13 eleq1w k=jkdomFjdomF
14 fveq2 k=jFk=Fj
15 14 eleq1d k=jFkFjballDxFjFjballDx
16 13 15 anbi12d k=jkdomFFkFjballDxjdomFFjFjballDx
17 16 rspcv jjkjkdomFFkFjballDxjdomFFjFjballDx
18 12 17 syl D∞MetXx+jkjkdomFFkFjballDxjdomFFjFjballDx
19 n0i FjFjballDx¬FjballDx=
20 blf D∞MetXballD:X×*𝒫X
21 20 fdmd D∞MetXdomballD=X×*
22 ndmovg domballD=X×*¬FjXx*FjballDx=
23 22 ex domballD=X×*¬FjXx*FjballDx=
24 21 23 syl D∞MetX¬FjXx*FjballDx=
25 24 con1d D∞MetX¬FjballDx=FjXx*
26 simpl FjXx*FjX
27 19 25 26 syl56 D∞MetXFjFjballDxFjX
28 27 adantld D∞MetXjdomFFjFjballDxFjX
29 28 ad2antrr D∞MetXx+jjdomFFjFjballDxFjX
30 18 29 syld D∞MetXx+jkjkdomFFkFjballDxFjX
31 14 eleq1d k=jFkXFjX
32 14 oveq1d k=jFkDFj=FjDFj
33 32 breq1d k=jFkDFj<xFjDFj<x
34 13 31 33 3anbi123d k=jkdomFFkXFkDFj<xjdomFFjXFjDFj<x
35 34 rspcv jjkjkdomFFkXFkDFj<xjdomFFjXFjDFj<x
36 12 35 syl D∞MetXx+jkjkdomFFkXFkDFj<xjdomFFjXFjDFj<x
37 simp2 jdomFFjXFjDFj<xFjX
38 36 37 syl6 D∞MetXx+jkjkdomFFkXFkDFj<xFjX
39 rpxr x+x*
40 elbl D∞MetXFjXx*FkFjballDxFkXFjDFk<x
41 39 40 syl3an3 D∞MetXFjXx+FkFjballDxFkXFjDFk<x
42 xmetsym D∞MetXFjXFkXFjDFk=FkDFj
43 42 3expa D∞MetXFjXFkXFjDFk=FkDFj
44 43 3adantl3 D∞MetXFjXx+FkXFjDFk=FkDFj
45 44 breq1d D∞MetXFjXx+FkXFjDFk<xFkDFj<x
46 45 pm5.32da D∞MetXFjXx+FkXFjDFk<xFkXFkDFj<x
47 41 46 bitrd D∞MetXFjXx+FkFjballDxFkXFkDFj<x
48 47 3com23 D∞MetXx+FjXFkFjballDxFkXFkDFj<x
49 48 anbi2d D∞MetXx+FjXkdomFFkFjballDxkdomFFkXFkDFj<x
50 3anass kdomFFkXFkDFj<xkdomFFkXFkDFj<x
51 49 50 bitr4di D∞MetXx+FjXkdomFFkFjballDxkdomFFkXFkDFj<x
52 51 ralbidv D∞MetXx+FjXkjkdomFFkFjballDxkjkdomFFkXFkDFj<x
53 52 3expia D∞MetXx+FjXkjkdomFFkFjballDxkjkdomFFkXFkDFj<x
54 53 adantr D∞MetXx+jFjXkjkdomFFkFjballDxkjkdomFFkXFkDFj<x
55 30 38 54 pm5.21ndd D∞MetXx+jkjkdomFFkFjballDxkjkdomFFkXFkDFj<x
56 55 rexbidva D∞MetXx+jkjkdomFFkFjballDxjkjkdomFFkXFkDFj<x
57 56 adantlr D∞MetXFX𝑝𝑚x+jkjkdomFFkFjballDxjkjkdomFFkXFkDFj<x
58 10 57 bitrd D∞MetXFX𝑝𝑚x+jFj:jFjballDxjkjkdomFFkXFkDFj<x
59 58 ralbidva D∞MetXFX𝑝𝑚x+jFj:jFjballDxx+jkjkdomFFkXFkDFj<x
60 59 pm5.32da D∞MetXFX𝑝𝑚x+jFj:jFjballDxFX𝑝𝑚x+jkjkdomFFkXFkDFj<x
61 1 60 bitrd D∞MetXFCauDFX𝑝𝑚x+jkjkdomFFkXFkDFj<x