Metamath Proof Explorer


Theorem iscau3

Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses iscau3.2 Z=M
iscau3.3 φD∞MetX
iscau3.4 φM
Assertion iscau3 φFCauDFX𝑝𝑚x+jZkjkdomFFkXmkFkDFm<x

Proof

Step Hyp Ref Expression
1 iscau3.2 Z=M
2 iscau3.3 φD∞MetX
3 iscau3.4 φM
4 iscau2 D∞MetXFCauDFX𝑝𝑚x+jkjkdomFFkXFkDFj<x
5 2 4 syl φFCauDFX𝑝𝑚x+jkjkdomFFkXFkDFj<x
6 2 adantr φFX𝑝𝑚D∞MetX
7 ssid
8 simpr kdomFFkXFkX
9 eleq1 Fk=FjFkXFjX
10 eleq1 Fk=FmFkXFmX
11 xmetsym D∞MetXFjXFkXFjDFk=FkDFj
12 11 fveq2d D∞MetXFjXFkXIFjDFk=IFkDFj
13 xmetsym D∞MetXFmXFjXFmDFj=FjDFm
14 13 fveq2d D∞MetXFmXFjXIFmDFj=IFjDFm
15 simp1 D∞MetXFkXFmXFjXxD∞MetX
16 simp2l D∞MetXFkXFmXFjXxFkX
17 simp3l D∞MetXFkXFmXFjXxFjX
18 xmetcl D∞MetXFkXFjXFkDFj*
19 15 16 17 18 syl3anc D∞MetXFkXFmXFjXxFkDFj*
20 simp2r D∞MetXFkXFmXFjXxFmX
21 xmetcl D∞MetXFjXFmXFjDFm*
22 15 17 20 21 syl3anc D∞MetXFkXFmXFjXxFjDFm*
23 simp3r D∞MetXFkXFmXFjXxx
24 23 rehalfcld D∞MetXFkXFmXFjXxx2
25 24 rexrd D∞MetXFkXFmXFjXxx2*
26 xlt2add FkDFj*FjDFm*x2*x2*FkDFj<x2FjDFm<x2FkDFj+𝑒FjDFm<x2+𝑒x2
27 19 22 25 25 26 syl22anc D∞MetXFkXFmXFjXxFkDFj<x2FjDFm<x2FkDFj+𝑒FjDFm<x2+𝑒x2
28 24 24 rexaddd D∞MetXFkXFmXFjXxx2+𝑒x2=x2+x2
29 23 recnd D∞MetXFkXFmXFjXxx
30 29 2halvesd D∞MetXFkXFmXFjXxx2+x2=x
31 28 30 eqtrd D∞MetXFkXFmXFjXxx2+𝑒x2=x
32 31 breq2d D∞MetXFkXFmXFjXxFkDFj+𝑒FjDFm<x2+𝑒x2FkDFj+𝑒FjDFm<x
33 xmettri D∞MetXFkXFmXFjXFkDFmFkDFj+𝑒FjDFm
34 15 16 20 17 33 syl13anc D∞MetXFkXFmXFjXxFkDFmFkDFj+𝑒FjDFm
35 xmetcl D∞MetXFkXFmXFkDFm*
36 15 16 20 35 syl3anc D∞MetXFkXFmXFjXxFkDFm*
37 19 22 xaddcld D∞MetXFkXFmXFjXxFkDFj+𝑒FjDFm*
38 23 rexrd D∞MetXFkXFmXFjXxx*
39 xrlelttr FkDFm*FkDFj+𝑒FjDFm*x*FkDFmFkDFj+𝑒FjDFmFkDFj+𝑒FjDFm<xFkDFm<x
40 36 37 38 39 syl3anc D∞MetXFkXFmXFjXxFkDFmFkDFj+𝑒FjDFmFkDFj+𝑒FjDFm<xFkDFm<x
41 34 40 mpand D∞MetXFkXFmXFjXxFkDFj+𝑒FjDFm<xFkDFm<x
42 32 41 sylbid D∞MetXFkXFmXFjXxFkDFj+𝑒FjDFm<x2+𝑒x2FkDFm<x
43 27 42 syld D∞MetXFkXFmXFjXxFkDFj<x2FjDFm<x2FkDFm<x
44 ovex FkDFjV
45 fvi FkDFjVIFkDFj=FkDFj
46 44 45 ax-mp IFkDFj=FkDFj
47 46 breq1i IFkDFj<x2FkDFj<x2
48 ovex FjDFmV
49 fvi FjDFmVIFjDFm=FjDFm
50 48 49 ax-mp IFjDFm=FjDFm
51 50 breq1i IFjDFm<x2FjDFm<x2
52 47 51 anbi12i IFkDFj<x2IFjDFm<x2FkDFj<x2FjDFm<x2
53 ovex FkDFmV
54 fvi FkDFmVIFkDFm=FkDFm
55 53 54 ax-mp IFkDFm=FkDFm
56 55 breq1i IFkDFm<xFkDFm<x
57 43 52 56 3imtr4g D∞MetXFkXFmXFjXxIFkDFj<x2IFjDFm<x2IFkDFm<x
58 7 8 9 10 12 14 57 cau3lem D∞MetXx+jkjkdomFFkXIFkDFj<xx+jkjkdomFFkXmkIFkDFm<x
59 6 58 syl φFX𝑝𝑚x+jkjkdomFFkXIFkDFj<xx+jkjkdomFFkXmkIFkDFm<x
60 46 breq1i IFkDFj<xFkDFj<x
61 60 anbi2i kdomFFkXIFkDFj<xkdomFFkXFkDFj<x
62 df-3an kdomFFkXFkDFj<xkdomFFkXFkDFj<x
63 61 62 bitr4i kdomFFkXIFkDFj<xkdomFFkXFkDFj<x
64 63 ralbii kjkdomFFkXIFkDFj<xkjkdomFFkXFkDFj<x
65 64 rexbii jkjkdomFFkXIFkDFj<xjkjkdomFFkXFkDFj<x
66 65 ralbii x+jkjkdomFFkXIFkDFj<xx+jkjkdomFFkXFkDFj<x
67 56 ralbii mkIFkDFm<xmkFkDFm<x
68 67 anbi2i kdomFFkXmkIFkDFm<xkdomFFkXmkFkDFm<x
69 df-3an kdomFFkXmkFkDFm<xkdomFFkXmkFkDFm<x
70 68 69 bitr4i kdomFFkXmkIFkDFm<xkdomFFkXmkFkDFm<x
71 70 ralbii kjkdomFFkXmkIFkDFm<xkjkdomFFkXmkFkDFm<x
72 71 rexbii jkjkdomFFkXmkIFkDFm<xjkjkdomFFkXmkFkDFm<x
73 72 ralbii x+jkjkdomFFkXmkIFkDFm<xx+jkjkdomFFkXmkFkDFm<x
74 59 66 73 3bitr3g φFX𝑝𝑚x+jkjkdomFFkXFkDFj<xx+jkjkdomFFkXmkFkDFm<x
75 3 adantr φFX𝑝𝑚M
76 1 rexuz3 MjZkjkdomFFkXmkFkDFm<xjkjkdomFFkXmkFkDFm<x
77 75 76 syl φFX𝑝𝑚jZkjkdomFFkXmkFkDFm<xjkjkdomFFkXmkFkDFm<x
78 77 ralbidv φFX𝑝𝑚x+jZkjkdomFFkXmkFkDFm<xx+jkjkdomFFkXmkFkDFm<x
79 74 78 bitr4d φFX𝑝𝑚x+jkjkdomFFkXFkDFj<xx+jZkjkdomFFkXmkFkDFm<x
80 79 pm5.32da φFX𝑝𝑚x+jkjkdomFFkXFkDFj<xFX𝑝𝑚x+jZkjkdomFFkXmkFkDFm<x
81 5 80 bitrd φFCauDFX𝑝𝑚x+jZkjkdomFFkXmkFkDFm<x