| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trgcgrg.p |  | 
						
							| 2 |  | trgcgrg.m |  | 
						
							| 3 |  | trgcgrg.r |  | 
						
							| 4 |  | trgcgrg.g |  | 
						
							| 5 |  | iscgrglt.d |  | 
						
							| 6 |  | iscgrglt.a |  | 
						
							| 7 |  | iscgrglt.b |  | 
						
							| 8 | 1 2 3 4 5 6 7 | iscgrgd |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 | 9 | 3exp |  | 
						
							| 11 | 10 | ralimdvva |  | 
						
							| 12 |  | breq1 |  | 
						
							| 13 |  | fveq2 |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 | 15 | oveq1d |  | 
						
							| 17 | 14 16 | eqeq12d |  | 
						
							| 18 | 12 17 | imbi12d |  | 
						
							| 19 |  | breq2 |  | 
						
							| 20 |  | fveq2 |  | 
						
							| 21 | 20 | oveq2d |  | 
						
							| 22 |  | fveq2 |  | 
						
							| 23 | 22 | oveq2d |  | 
						
							| 24 | 21 23 | eqeq12d |  | 
						
							| 25 | 19 24 | imbi12d |  | 
						
							| 26 | 18 25 | cbvral2vw |  | 
						
							| 27 |  | simpllr |  | 
						
							| 28 |  | simplr |  | 
						
							| 29 |  | simp-4r |  | 
						
							| 30 | 27 28 29 | jca31 |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 18 25 | rspc2va |  | 
						
							| 33 | 30 31 32 | sylc |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 4 | ad3antrrr |  | 
						
							| 36 | 6 | ad2antrr |  | 
						
							| 37 |  | simplr |  | 
						
							| 38 | 36 | fdmd |  | 
						
							| 39 | 37 38 | eleqtrd |  | 
						
							| 40 | 36 39 | ffvelcdmd |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 7 | ad2antrr |  | 
						
							| 43 | 42 39 | ffvelcdmd |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 1 2 34 35 41 44 | tgcgrtriv |  | 
						
							| 46 |  | simpr |  | 
						
							| 47 | 46 | fveq2d |  | 
						
							| 48 | 47 | oveq2d |  | 
						
							| 49 | 46 | fveq2d |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 45 48 50 | 3eqtr3d |  | 
						
							| 52 | 51 | adantl3r |  | 
						
							| 53 | 4 | ad4antr |  | 
						
							| 54 |  | simpr |  | 
						
							| 55 | 54 38 | eleqtrd |  | 
						
							| 56 | 36 55 | ffvelcdmd |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 | 57 | adantl3r |  | 
						
							| 59 | 40 | adantr |  | 
						
							| 60 | 59 | adantl3r |  | 
						
							| 61 | 42 55 | ffvelcdmd |  | 
						
							| 62 | 61 | adantr |  | 
						
							| 63 | 62 | adantl3r |  | 
						
							| 64 | 43 | adantr |  | 
						
							| 65 | 64 | adantl3r |  | 
						
							| 66 |  | simplr |  | 
						
							| 67 |  | simpllr |  | 
						
							| 68 |  | simp-4r |  | 
						
							| 69 | 66 67 68 | jca31 |  | 
						
							| 70 |  | simpr |  | 
						
							| 71 |  | breq1 |  | 
						
							| 72 |  | fveq2 |  | 
						
							| 73 | 72 | oveq1d |  | 
						
							| 74 |  | fveq2 |  | 
						
							| 75 | 74 | oveq1d |  | 
						
							| 76 | 73 75 | eqeq12d |  | 
						
							| 77 | 71 76 | imbi12d |  | 
						
							| 78 |  | breq2 |  | 
						
							| 79 |  | fveq2 |  | 
						
							| 80 | 79 | oveq2d |  | 
						
							| 81 |  | fveq2 |  | 
						
							| 82 | 81 | oveq2d |  | 
						
							| 83 | 80 82 | eqeq12d |  | 
						
							| 84 | 78 83 | imbi12d |  | 
						
							| 85 | 77 84 | rspc2va |  | 
						
							| 86 | 69 70 85 | sylc |  | 
						
							| 87 | 1 2 34 53 58 60 63 65 86 | tgcgrcomlr |  | 
						
							| 88 | 6 | fdmd |  | 
						
							| 89 | 88 5 | eqsstrd |  | 
						
							| 90 | 89 | ad3antrrr |  | 
						
							| 91 |  | simplr |  | 
						
							| 92 | 90 91 | sseldd |  | 
						
							| 93 |  | simpr |  | 
						
							| 94 | 90 93 | sseldd |  | 
						
							| 95 | 92 94 | lttri4d |  | 
						
							| 96 | 33 52 87 95 | mpjao3dan |  | 
						
							| 97 | 96 | anasss |  | 
						
							| 98 | 97 | ralrimivva |  | 
						
							| 99 | 98 | ex |  | 
						
							| 100 | 26 99 | biimtrrid |  | 
						
							| 101 | 11 100 | impbid |  | 
						
							| 102 | 8 101 | bitrd |  |