Metamath Proof Explorer


Theorem iscgrglt

Description: The property for two sequences A and B of points to be congruent, where the congruence is only required for indices verifying a less-than relation. (Contributed by Thierry Arnoux, 7-Oct-2020)

Ref Expression
Hypotheses trgcgrg.p P=BaseG
trgcgrg.m -˙=distG
trgcgrg.r ˙=𝒢G
trgcgrg.g φG𝒢Tarski
iscgrglt.d φD
iscgrglt.a φA:DP
iscgrglt.b φB:DP
Assertion iscgrglt φA˙BidomAjdomAi<jAi-˙Aj=Bi-˙Bj

Proof

Step Hyp Ref Expression
1 trgcgrg.p P=BaseG
2 trgcgrg.m -˙=distG
3 trgcgrg.r ˙=𝒢G
4 trgcgrg.g φG𝒢Tarski
5 iscgrglt.d φD
6 iscgrglt.a φA:DP
7 iscgrglt.b φB:DP
8 1 2 3 4 5 6 7 iscgrgd φA˙BidomAjdomAAi-˙Aj=Bi-˙Bj
9 simp2 φidomAjdomAAi-˙Aj=Bi-˙Bji<jAi-˙Aj=Bi-˙Bj
10 9 3exp φidomAjdomAAi-˙Aj=Bi-˙Bji<jAi-˙Aj=Bi-˙Bj
11 10 ralimdvva φidomAjdomAAi-˙Aj=Bi-˙BjidomAjdomAi<jAi-˙Aj=Bi-˙Bj
12 breq1 k=ik<li<l
13 fveq2 k=iAk=Ai
14 13 oveq1d k=iAk-˙Al=Ai-˙Al
15 fveq2 k=iBk=Bi
16 15 oveq1d k=iBk-˙Bl=Bi-˙Bl
17 14 16 eqeq12d k=iAk-˙Al=Bk-˙BlAi-˙Al=Bi-˙Bl
18 12 17 imbi12d k=ik<lAk-˙Al=Bk-˙Bli<lAi-˙Al=Bi-˙Bl
19 breq2 l=ji<li<j
20 fveq2 l=jAl=Aj
21 20 oveq2d l=jAi-˙Al=Ai-˙Aj
22 fveq2 l=jBl=Bj
23 22 oveq2d l=jBi-˙Bl=Bi-˙Bj
24 21 23 eqeq12d l=jAi-˙Al=Bi-˙BlAi-˙Aj=Bi-˙Bj
25 19 24 imbi12d l=ji<lAi-˙Al=Bi-˙Bli<jAi-˙Aj=Bi-˙Bj
26 18 25 cbvral2vw kdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi<jAi-˙Aj=Bi-˙Bj
27 simpllr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi<jidomA
28 simplr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi<jjdomA
29 simp-4r φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi<jkdomAldomAk<lAk-˙Al=Bk-˙Bl
30 27 28 29 jca31 φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi<jidomAjdomAkdomAldomAk<lAk-˙Al=Bk-˙Bl
31 simpr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi<ji<j
32 18 25 rspc2va idomAjdomAkdomAldomAk<lAk-˙Al=Bk-˙Bli<jAi-˙Aj=Bi-˙Bj
33 30 31 32 sylc φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi<jAi-˙Aj=Bi-˙Bj
34 eqid ItvG=ItvG
35 4 ad3antrrr φidomAjdomAi=jG𝒢Tarski
36 6 ad2antrr φidomAjdomAA:DP
37 simplr φidomAjdomAidomA
38 36 fdmd φidomAjdomAdomA=D
39 37 38 eleqtrd φidomAjdomAiD
40 36 39 ffvelcdmd φidomAjdomAAiP
41 40 adantr φidomAjdomAi=jAiP
42 7 ad2antrr φidomAjdomAB:DP
43 42 39 ffvelcdmd φidomAjdomABiP
44 43 adantr φidomAjdomAi=jBiP
45 1 2 34 35 41 44 tgcgrtriv φidomAjdomAi=jAi-˙Ai=Bi-˙Bi
46 simpr φidomAjdomAi=ji=j
47 46 fveq2d φidomAjdomAi=jAi=Aj
48 47 oveq2d φidomAjdomAi=jAi-˙Ai=Ai-˙Aj
49 46 fveq2d φidomAjdomAi=jBi=Bj
50 49 oveq2d φidomAjdomAi=jBi-˙Bi=Bi-˙Bj
51 45 48 50 3eqtr3d φidomAjdomAi=jAi-˙Aj=Bi-˙Bj
52 51 adantl3r φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi=jAi-˙Aj=Bi-˙Bj
53 4 ad4antr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<iG𝒢Tarski
54 simpr φidomAjdomAjdomA
55 54 38 eleqtrd φidomAjdomAjD
56 36 55 ffvelcdmd φidomAjdomAAjP
57 56 adantr φidomAjdomAj<iAjP
58 57 adantl3r φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<iAjP
59 40 adantr φidomAjdomAj<iAiP
60 59 adantl3r φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<iAiP
61 42 55 ffvelcdmd φidomAjdomABjP
62 61 adantr φidomAjdomAj<iBjP
63 62 adantl3r φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<iBjP
64 43 adantr φidomAjdomAj<iBiP
65 64 adantl3r φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<iBiP
66 simplr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<ijdomA
67 simpllr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<iidomA
68 simp-4r φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<ikdomAldomAk<lAk-˙Al=Bk-˙Bl
69 66 67 68 jca31 φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<ijdomAidomAkdomAldomAk<lAk-˙Al=Bk-˙Bl
70 simpr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<ij<i
71 breq1 k=jk<lj<l
72 fveq2 k=jAk=Aj
73 72 oveq1d k=jAk-˙Al=Aj-˙Al
74 fveq2 k=jBk=Bj
75 74 oveq1d k=jBk-˙Bl=Bj-˙Bl
76 73 75 eqeq12d k=jAk-˙Al=Bk-˙BlAj-˙Al=Bj-˙Bl
77 71 76 imbi12d k=jk<lAk-˙Al=Bk-˙Blj<lAj-˙Al=Bj-˙Bl
78 breq2 l=ij<lj<i
79 fveq2 l=iAl=Ai
80 79 oveq2d l=iAj-˙Al=Aj-˙Ai
81 fveq2 l=iBl=Bi
82 81 oveq2d l=iBj-˙Bl=Bj-˙Bi
83 80 82 eqeq12d l=iAj-˙Al=Bj-˙BlAj-˙Ai=Bj-˙Bi
84 78 83 imbi12d l=ij<lAj-˙Al=Bj-˙Blj<iAj-˙Ai=Bj-˙Bi
85 77 84 rspc2va jdomAidomAkdomAldomAk<lAk-˙Al=Bk-˙Blj<iAj-˙Ai=Bj-˙Bi
86 69 70 85 sylc φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<iAj-˙Ai=Bj-˙Bi
87 1 2 34 53 58 60 63 65 86 tgcgrcomlr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj<iAi-˙Aj=Bi-˙Bj
88 6 fdmd φdomA=D
89 88 5 eqsstrd φdomA
90 89 ad3antrrr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAdomA
91 simplr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAidomA
92 90 91 sseldd φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi
93 simpr φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAjdomA
94 90 93 sseldd φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAj
95 92 94 lttri4d φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAi<ji=jj<i
96 33 52 87 95 mpjao3dan φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAAi-˙Aj=Bi-˙Bj
97 96 anasss φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAAi-˙Aj=Bi-˙Bj
98 97 ralrimivva φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAAi-˙Aj=Bi-˙Bj
99 98 ex φkdomAldomAk<lAk-˙Al=Bk-˙BlidomAjdomAAi-˙Aj=Bi-˙Bj
100 26 99 biimtrrid φidomAjdomAi<jAi-˙Aj=Bi-˙BjidomAjdomAAi-˙Aj=Bi-˙Bj
101 11 100 impbid φidomAjdomAAi-˙Aj=Bi-˙BjidomAjdomAi<jAi-˙Aj=Bi-˙Bj
102 8 101 bitrd φA˙BidomAjdomAi<jAi-˙Aj=Bi-˙Bj