| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdrng4.b |  | 
						
							| 2 |  | isdrng4.0 |  | 
						
							| 3 |  | isdrng4.1 |  | 
						
							| 4 |  | isdrng4.x |  | 
						
							| 5 |  | isdrng4.u |  | 
						
							| 6 |  | isdrng4.r |  | 
						
							| 7 | 1 5 2 | isdrng |  | 
						
							| 8 | 6 | biantrurd |  | 
						
							| 9 | 7 8 | bitr4id |  | 
						
							| 10 | 5 3 | 1unit |  | 
						
							| 11 | 6 10 | syl |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 12 13 | eleqtrd |  | 
						
							| 15 |  | eldifsni |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 |  | simpll |  | 
						
							| 18 | 13 | eleq2d |  | 
						
							| 19 | 18 | biimpar |  | 
						
							| 20 | 6 | ad5antr |  | 
						
							| 21 | 1 5 | unitcl |  | 
						
							| 22 | 21 | ad5antlr |  | 
						
							| 23 |  | simp-4r |  | 
						
							| 24 |  | simplr |  | 
						
							| 25 |  | simpllr |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 | 1 2 3 4 5 20 22 23 24 25 26 | ringinveu |  | 
						
							| 28 | 27 | oveq2d |  | 
						
							| 29 | 28 26 | eqtr3d |  | 
						
							| 30 | 21 | ad3antlr |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 5 3 31 32 33 | isunit |  | 
						
							| 35 | 34 | simprbi |  | 
						
							| 36 | 35 | ad3antlr |  | 
						
							| 37 | 32 1 | opprbas |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 37 33 38 | dvdsr2 |  | 
						
							| 40 | 39 | biimpa |  | 
						
							| 41 | 1 4 32 38 | opprmul |  | 
						
							| 42 | 41 | eqeq1i |  | 
						
							| 43 | 42 | rexbii |  | 
						
							| 44 | 40 43 | sylib |  | 
						
							| 45 |  | oveq2 |  | 
						
							| 46 | 45 | eqeq1d |  | 
						
							| 47 | 46 | cbvrexvw |  | 
						
							| 48 | 44 47 | sylib |  | 
						
							| 49 | 30 36 48 | syl2anc |  | 
						
							| 50 | 29 49 | r19.29a |  | 
						
							| 51 |  | simpr |  | 
						
							| 52 | 50 51 | jca |  | 
						
							| 53 | 52 | anasss |  | 
						
							| 54 | 21 | adantl |  | 
						
							| 55 | 34 | simplbi |  | 
						
							| 56 | 55 | adantl |  | 
						
							| 57 | 1 31 4 | dvdsr2 |  | 
						
							| 58 | 57 | biimpa |  | 
						
							| 59 | 54 56 58 | syl2anc |  | 
						
							| 60 | 53 59 | reximddv |  | 
						
							| 61 | 17 19 60 | syl2anc |  | 
						
							| 62 | 61 | ralrimiva |  | 
						
							| 63 | 16 62 | jca |  | 
						
							| 64 | 1 5 | unitss |  | 
						
							| 65 | 64 | a1i |  | 
						
							| 66 | 6 | adantr |  | 
						
							| 67 |  | simprl |  | 
						
							| 68 | 5 2 3 | 0unit |  | 
						
							| 69 | 68 | necon3bbid |  | 
						
							| 70 | 69 | biimpar |  | 
						
							| 71 | 66 67 70 | syl2anc |  | 
						
							| 72 |  | ssdifsn |  | 
						
							| 73 | 65 71 72 | sylanbrc |  | 
						
							| 74 |  | simplr |  | 
						
							| 75 | 74 | eldifad |  | 
						
							| 76 |  | simpr |  | 
						
							| 77 | 76 | reximi |  | 
						
							| 78 | 77 | adantl |  | 
						
							| 79 | 57 | biimpar |  | 
						
							| 80 | 75 78 79 | syl2anc |  | 
						
							| 81 |  | simpl |  | 
						
							| 82 | 81 | reximi |  | 
						
							| 83 | 82 | adantl |  | 
						
							| 84 | 83 43 | sylibr |  | 
						
							| 85 | 39 | biimpar |  | 
						
							| 86 | 75 84 85 | syl2anc |  | 
						
							| 87 | 80 86 34 | sylanbrc |  | 
						
							| 88 | 87 | ex |  | 
						
							| 89 | 88 | ralimdva |  | 
						
							| 90 | 89 | impr |  | 
						
							| 91 |  | dfss3 |  | 
						
							| 92 | 90 91 | sylibr |  | 
						
							| 93 | 73 92 | eqssd |  | 
						
							| 94 | 63 93 | impbida |  | 
						
							| 95 | 9 94 | bitrd |  |