Description: Lemma for isfin3-2 . There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isf32lem.a | |
|
isf32lem.b | |
||
isf32lem.c | |
||
isf32lem.d | |
||
Assertion | isf32lem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf32lem.a | |
|
2 | isf32lem.b | |
|
3 | isf32lem.c | |
|
4 | isf32lem.d | |
|
5 | 1 2 3 | isf32lem2 | |
6 | 5 | ralrimiva | |
7 | 4 | ssrab3 | |
8 | nnunifi | |
|
9 | 7 8 | mpan | |
10 | 9 | adantl | |
11 | elssuni | |
|
12 | nnon | |
|
13 | omsson | |
|
14 | 13 10 | sselid | |
15 | ontri1 | |
|
16 | 12 14 15 | syl2anr | |
17 | 11 16 | imbitrid | |
18 | 17 | con2d | |
19 | 18 | impr | |
20 | 4 | eleq2i | |
21 | 19 20 | sylnib | |
22 | suceq | |
|
23 | 22 | fveq2d | |
24 | fveq2 | |
|
25 | 23 24 | psseq12d | |
26 | 25 | elrab3 | |
27 | 26 | ad2antrl | |
28 | 21 27 | mtbid | |
29 | 28 | expr | |
30 | imnan | |
|
31 | 29 30 | sylib | |
32 | 31 | nrexdv | |
33 | eleq1 | |
|
34 | 33 | anbi1d | |
35 | 34 | rexbidv | |
36 | 35 | notbid | |
37 | 36 | rspcev | |
38 | 10 32 37 | syl2anc | |
39 | rexnal | |
|
40 | 38 39 | sylib | |
41 | 40 | ex | |
42 | 6 41 | mt2d | |