Metamath Proof Explorer


Theorem isf32lem5

Description: Lemma for isfin3-2 . There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φF:ω𝒫G
isf32lem.b φxωFsucxFx
isf32lem.c φ¬ranFranF
isf32lem.d S=yω|FsucyFy
Assertion isf32lem5 φ¬SFin

Proof

Step Hyp Ref Expression
1 isf32lem.a φF:ω𝒫G
2 isf32lem.b φxωFsucxFx
3 isf32lem.c φ¬ranFranF
4 isf32lem.d S=yω|FsucyFy
5 1 2 3 isf32lem2 φaωbωabFsucbFb
6 5 ralrimiva φaωbωabFsucbFb
7 4 ssrab3 Sω
8 nnunifi SωSFinSω
9 7 8 mpan SFinSω
10 9 adantl φSFinSω
11 elssuni bSbS
12 nnon bωbOn
13 omsson ωOn
14 13 10 sselid φSFinSOn
15 ontri1 bOnSOnbS¬Sb
16 12 14 15 syl2anr φSFinbωbS¬Sb
17 11 16 imbitrid φSFinbωbS¬Sb
18 17 con2d φSFinbωSb¬bS
19 18 impr φSFinbωSb¬bS
20 4 eleq2i bSbyω|FsucyFy
21 19 20 sylnib φSFinbωSb¬byω|FsucyFy
22 suceq y=bsucy=sucb
23 22 fveq2d y=bFsucy=Fsucb
24 fveq2 y=bFy=Fb
25 23 24 psseq12d y=bFsucyFyFsucbFb
26 25 elrab3 bωbyω|FsucyFyFsucbFb
27 26 ad2antrl φSFinbωSbbyω|FsucyFyFsucbFb
28 21 27 mtbid φSFinbωSb¬FsucbFb
29 28 expr φSFinbωSb¬FsucbFb
30 imnan Sb¬FsucbFb¬SbFsucbFb
31 29 30 sylib φSFinbω¬SbFsucbFb
32 31 nrexdv φSFin¬bωSbFsucbFb
33 eleq1 a=SabSb
34 33 anbi1d a=SabFsucbFbSbFsucbFb
35 34 rexbidv a=SbωabFsucbFbbωSbFsucbFb
36 35 notbid a=S¬bωabFsucbFb¬bωSbFsucbFb
37 36 rspcev Sω¬bωSbFsucbFbaω¬bωabFsucbFb
38 10 32 37 syl2anc φSFinaω¬bωabFsucbFb
39 rexnal aω¬bωabFsucbFb¬aωbωabFsucbFb
40 38 39 sylib φSFin¬aωbωabFsucbFb
41 40 ex φSFin¬aωbωabFsucbFb
42 6 41 mt2d φ¬SFin