Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | compss.a | |
|
Assertion | isf34lem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | |
|
2 | sspwuni | |
|
3 | 1 | isf34lem1 | |
4 | 2 3 | sylan2b | |
5 | 4 | adantrr | |
6 | simplrr | |
|
7 | simprl | |
|
8 | 7 | ad2antrr | |
9 | simpr | |
|
10 | 8 9 | eldifd | |
11 | simplrr | |
|
12 | elunii | |
|
13 | 10 11 12 | syl2anc | |
14 | 13 | ex | |
15 | 6 14 | mt3d | |
16 | 15 | expr | |
17 | 16 | ralrimiva | |
18 | 17 | ex | |
19 | n0 | |
|
20 | simpr | |
|
21 | 20 | sselda | |
22 | 21 | elpwid | |
23 | dfss4 | |
|
24 | 22 23 | sylib | |
25 | simpr | |
|
26 | 24 25 | eqeltrd | |
27 | difss | |
|
28 | elpw2g | |
|
29 | 27 28 | mpbiri | |
30 | 29 | ad2antrr | |
31 | difeq2 | |
|
32 | 31 | eleq1d | |
33 | eleq2 | |
|
34 | 32 33 | imbi12d | |
35 | 34 | rspcv | |
36 | 30 35 | syl | |
37 | 26 36 | mpid | |
38 | eldifi | |
|
39 | 37 38 | syl6 | |
40 | 39 | ex | |
41 | 40 | exlimdv | |
42 | 19 41 | biimtrid | |
43 | 42 | impr | |
44 | eluni | |
|
45 | 29 | ad2antrr | |
46 | 26 | adantlrr | |
47 | 46 | adantrl | |
48 | elndif | |
|
49 | 48 | ad2antrl | |
50 | 47 49 | jcnd | |
51 | 34 | notbid | |
52 | 51 | rspcev | |
53 | 45 50 52 | syl2anc | |
54 | rexnal | |
|
55 | 53 54 | sylib | |
56 | 55 | ex | |
57 | 56 | exlimdv | |
58 | 44 57 | biimtrid | |
59 | 58 | con2d | |
60 | 43 59 | jcad | |
61 | 18 60 | impbid | |
62 | eldif | |
|
63 | vex | |
|
64 | 63 | elintrab | |
65 | 61 62 64 | 3bitr4g | |
66 | 65 | eqrdv | |
67 | 5 66 | eqtrd | |
68 | 1 | compss | |
69 | 68 | inteqi | |
70 | 67 69 | eqtr4di | |