Metamath Proof Explorer


Theorem isfunc

Description: Value of the set of functors between two categories. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isfunc.b B=BaseD
isfunc.c C=BaseE
isfunc.h H=HomD
isfunc.j J=HomE
isfunc.1 1˙=IdD
isfunc.i I=IdE
isfunc.x ·˙=compD
isfunc.o O=compE
isfunc.d φDCat
isfunc.e φECat
Assertion isfunc φFDFuncEGF:BCGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym

Proof

Step Hyp Ref Expression
1 isfunc.b B=BaseD
2 isfunc.c C=BaseE
3 isfunc.h H=HomD
4 isfunc.j J=HomE
5 isfunc.1 1˙=IdD
6 isfunc.i I=IdE
7 isfunc.x ·˙=compD
8 isfunc.o O=compE
9 isfunc.d φDCat
10 isfunc.e φECat
11 fvexd d=De=EBasedV
12 simpl d=De=Ed=D
13 12 fveq2d d=De=EBased=BaseD
14 13 1 eqtr4di d=De=EBased=B
15 simpr d=De=Eb=Bb=B
16 simplr d=De=Eb=Be=E
17 16 fveq2d d=De=Eb=BBasee=BaseE
18 17 2 eqtr4di d=De=Eb=BBasee=C
19 15 18 feq23d d=De=Eb=Bf:bBaseef:BC
20 2 fvexi CV
21 1 fvexi BV
22 20 21 elmap fCBf:BC
23 19 22 bitr4di d=De=Eb=Bf:bBaseefCB
24 15 sqxpeqd d=De=Eb=Bb×b=B×B
25 24 ixpeq1d d=De=Eb=Bzb×bf1stzHomef2ndzHomdz=zB×Bf1stzHomef2ndzHomdz
26 16 fveq2d d=De=Eb=BHome=HomE
27 26 4 eqtr4di d=De=Eb=BHome=J
28 27 oveqd d=De=Eb=Bf1stzHomef2ndz=f1stzJf2ndz
29 simpll d=De=Eb=Bd=D
30 29 fveq2d d=De=Eb=BHomd=HomD
31 30 3 eqtr4di d=De=Eb=BHomd=H
32 31 fveq1d d=De=Eb=BHomdz=Hz
33 28 32 oveq12d d=De=Eb=Bf1stzHomef2ndzHomdz=f1stzJf2ndzHz
34 33 ixpeq2dv d=De=Eb=BzB×Bf1stzHomef2ndzHomdz=zB×Bf1stzJf2ndzHz
35 25 34 eqtrd d=De=Eb=Bzb×bf1stzHomef2ndzHomdz=zB×Bf1stzJf2ndzHz
36 35 eleq2d d=De=Eb=Bgzb×bf1stzHomef2ndzHomdzgzB×Bf1stzJf2ndzHz
37 29 fveq2d d=De=Eb=BIdd=IdD
38 37 5 eqtr4di d=De=Eb=BIdd=1˙
39 38 fveq1d d=De=Eb=BIddx=1˙x
40 39 fveq2d d=De=Eb=BxgxIddx=xgx1˙x
41 16 fveq2d d=De=Eb=BIde=IdE
42 41 6 eqtr4di d=De=Eb=BIde=I
43 42 fveq1d d=De=Eb=BIdefx=Ifx
44 40 43 eqeq12d d=De=Eb=BxgxIddx=Idefxxgx1˙x=Ifx
45 31 oveqd d=De=Eb=BxHomdy=xHy
46 31 oveqd d=De=Eb=ByHomdz=yHz
47 29 fveq2d d=De=Eb=Bcompd=compD
48 47 7 eqtr4di d=De=Eb=Bcompd=·˙
49 48 oveqd d=De=Eb=Bxycompdz=xy·˙z
50 49 oveqd d=De=Eb=Bnxycompdzm=nxy·˙zm
51 50 fveq2d d=De=Eb=Bxgznxycompdzm=xgznxy·˙zm
52 16 fveq2d d=De=Eb=Bcompe=compE
53 52 8 eqtr4di d=De=Eb=Bcompe=O
54 53 oveqd d=De=Eb=Bfxfycompefz=fxfyOfz
55 54 oveqd d=De=Eb=Bygznfxfycompefzxgym=ygznfxfyOfzxgym
56 51 55 eqeq12d d=De=Eb=Bxgznxycompdzm=ygznfxfycompefzxgymxgznxy·˙zm=ygznfxfyOfzxgym
57 46 56 raleqbidv d=De=Eb=BnyHomdzxgznxycompdzm=ygznfxfycompefzxgymnyHzxgznxy·˙zm=ygznfxfyOfzxgym
58 45 57 raleqbidv d=De=Eb=BmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgymmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
59 15 58 raleqbidv d=De=Eb=BzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgymzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
60 15 59 raleqbidv d=De=Eb=BybzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgymyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
61 44 60 anbi12d d=De=Eb=BxgxIddx=IdefxybzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgymxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
62 15 61 raleqbidv d=De=Eb=BxbxgxIddx=IdefxybzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgymxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
63 23 36 62 3anbi123d d=De=Eb=Bf:bBaseegzb×bf1stzHomef2ndzHomdzxbxgxIddx=IdefxybzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgymfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
64 df-3an fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
65 63 64 bitrdi d=De=Eb=Bf:bBaseegzb×bf1stzHomef2ndzHomdzxbxgxIddx=IdefxybzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgymfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
66 11 14 65 sbcied2 d=De=E[˙Based/b]˙f:bBaseegzb×bf1stzHomef2ndzHomdzxbxgxIddx=IdefxybzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgymfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
67 66 opabbidv d=De=Efg|[˙Based/b]˙f:bBaseegzb×bf1stzHomef2ndzHomdzxbxgxIddx=IdefxybzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgym=fg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
68 df-func Func=dCat,eCatfg|[˙Based/b]˙f:bBaseegzb×bf1stzHomef2ndzHomdzxbxgxIddx=IdefxybzbmxHomdynyHomdzxgznxycompdzm=ygznfxfycompefzxgym
69 ovex CBV
70 vsnex fV
71 ovex f1stzJf2ndzHzV
72 71 rgenw zB×Bf1stzJf2ndzHzV
73 ixpexg zB×Bf1stzJf2ndzHzVzB×Bf1stzJf2ndzHzV
74 72 73 ax-mp zB×Bf1stzJf2ndzHzV
75 70 74 xpex f×zB×Bf1stzJf2ndzHzV
76 69 75 iunex fCBf×zB×Bf1stzJf2ndzHzV
77 simpl fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymfCBgzB×Bf1stzJf2ndzHz
78 77 anim2i d=fgfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymd=fgfCBgzB×Bf1stzJf2ndzHz
79 78 2eximi fgd=fgfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymfgd=fgfCBgzB×Bf1stzJf2ndzHz
80 elopab dfg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymfgd=fgfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
81 eliunxp dfCBf×zB×Bf1stzJf2ndzHzfgd=fgfCBgzB×Bf1stzJf2ndzHz
82 79 80 81 3imtr4i dfg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymdfCBf×zB×Bf1stzJf2ndzHz
83 82 ssriv fg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymfCBf×zB×Bf1stzJf2ndzHz
84 76 83 ssexi fg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymV
85 67 68 84 ovmpoa DCatECatDFuncE=fg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
86 9 10 85 syl2anc φDFuncE=fg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
87 86 breqd φFDFuncEGFfg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymG
88 brabv Ffg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymGFVGV
89 elex FCBFV
90 elex GzB×BF1stzJF2ndzHzGV
91 89 90 anim12i FCBGzB×BF1stzJF2ndzHzFVGV
92 91 3adant3 FCBGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGymFVGV
93 simpl f=Fg=Gf=F
94 93 eleq1d f=Fg=GfCBFCB
95 simpr f=Fg=Gg=G
96 93 fveq1d f=Fg=Gf1stz=F1stz
97 93 fveq1d f=Fg=Gf2ndz=F2ndz
98 96 97 oveq12d f=Fg=Gf1stzJf2ndz=F1stzJF2ndz
99 98 oveq1d f=Fg=Gf1stzJf2ndzHz=F1stzJF2ndzHz
100 99 ixpeq2dv f=Fg=GzB×Bf1stzJf2ndzHz=zB×BF1stzJF2ndzHz
101 95 100 eleq12d f=Fg=GgzB×Bf1stzJf2ndzHzGzB×BF1stzJF2ndzHz
102 95 oveqd f=Fg=Gxgx=xGx
103 102 fveq1d f=Fg=Gxgx1˙x=xGx1˙x
104 93 fveq1d f=Fg=Gfx=Fx
105 104 fveq2d f=Fg=GIfx=IFx
106 103 105 eqeq12d f=Fg=Gxgx1˙x=IfxxGx1˙x=IFx
107 95 oveqd f=Fg=Gxgz=xGz
108 107 fveq1d f=Fg=Gxgznxy·˙zm=xGznxy·˙zm
109 93 fveq1d f=Fg=Gfy=Fy
110 104 109 opeq12d f=Fg=Gfxfy=FxFy
111 93 fveq1d f=Fg=Gfz=Fz
112 110 111 oveq12d f=Fg=GfxfyOfz=FxFyOFz
113 95 oveqd f=Fg=Gygz=yGz
114 113 fveq1d f=Fg=Gygzn=yGzn
115 95 oveqd f=Fg=Gxgy=xGy
116 115 fveq1d f=Fg=Gxgym=xGym
117 112 114 116 oveq123d f=Fg=GygznfxfyOfzxgym=yGznFxFyOFzxGym
118 108 117 eqeq12d f=Fg=Gxgznxy·˙zm=ygznfxfyOfzxgymxGznxy·˙zm=yGznFxFyOFzxGym
119 118 2ralbidv f=Fg=GmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
120 119 2ralbidv f=Fg=GyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
121 106 120 anbi12d f=Fg=Gxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
122 121 ralbidv f=Fg=GxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
123 94 101 122 3anbi123d f=Fg=GfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymFCBGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
124 64 123 bitr3id f=Fg=GfCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymFCBGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
125 eqid fg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym=fg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgym
126 124 125 brabga FVGVFfg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymGFCBGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
127 88 92 126 pm5.21nii Ffg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymGFCBGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
128 20 21 elmap FCBF:BC
129 128 3anbi1i FCBGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGymF:BCGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
130 127 129 bitri Ffg|fCBgzB×Bf1stzJf2ndzHzxBxgx1˙x=IfxyBzBmxHynyHzxgznxy·˙zm=ygznfxfyOfzxgymGF:BCGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
131 87 130 bitrdi φFDFuncEGF:BCGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym