Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islbs2.v | |
|
islbs2.j | |
||
islbs2.n | |
||
Assertion | islbs2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islbs2.v | |
|
2 | islbs2.j | |
|
3 | islbs2.n | |
|
4 | 1 2 | lbsss | |
5 | 4 | adantl | |
6 | 1 2 3 | lbssp | |
7 | 6 | adantl | |
8 | lveclmod | |
|
9 | eqid | |
|
10 | 9 | lvecdrng | |
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 | drngunz | |
14 | 10 13 | syl | |
15 | 8 14 | jca | |
16 | 2 3 9 12 11 | lbsind2 | |
17 | 15 16 | syl3an1 | |
18 | 17 | 3expa | |
19 | 18 | ralrimiva | |
20 | 5 7 19 | 3jca | |
21 | simpr1 | |
|
22 | simpr2 | |
|
23 | id | |
|
24 | sneq | |
|
25 | 24 | difeq2d | |
26 | 25 | fveq2d | |
27 | 23 26 | eleq12d | |
28 | 27 | notbid | |
29 | simplr3 | |
|
30 | simprl | |
|
31 | 28 29 30 | rspcdva | |
32 | simpll | |
|
33 | simprr | |
|
34 | eldifsn | |
|
35 | 33 34 | sylib | |
36 | 21 | adantr | |
37 | 36 30 | sseldd | |
38 | eqid | |
|
39 | eqid | |
|
40 | 1 9 38 39 11 3 | lspsnvs | |
41 | 32 35 37 40 | syl3anc | |
42 | 41 | sseq1d | |
43 | eqid | |
|
44 | 8 | adantr | |
45 | 44 | adantr | |
46 | 36 | ssdifssd | |
47 | 1 43 3 | lspcl | |
48 | 45 46 47 | syl2anc | |
49 | 35 | simpld | |
50 | 1 9 38 39 | lmodvscl | |
51 | 45 49 37 50 | syl3anc | |
52 | 1 43 3 45 48 51 | lspsnel5 | |
53 | 1 43 3 45 48 37 | lspsnel5 | |
54 | 42 52 53 | 3bitr4d | |
55 | 31 54 | mtbird | |
56 | 55 | ralrimivva | |
57 | 1 9 38 39 2 3 11 | islbs | |
58 | 57 | adantr | |
59 | 21 22 56 58 | mpbir3and | |
60 | 20 59 | impbida | |