Metamath Proof Explorer


Theorem islbs2

Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses islbs2.v V=BaseW
islbs2.j J=LBasisW
islbs2.n N=LSpanW
Assertion islbs2 WLVecBJBVNB=VxB¬xNBx

Proof

Step Hyp Ref Expression
1 islbs2.v V=BaseW
2 islbs2.j J=LBasisW
3 islbs2.n N=LSpanW
4 1 2 lbsss BJBV
5 4 adantl WLVecBJBV
6 1 2 3 lbssp BJNB=V
7 6 adantl WLVecBJNB=V
8 lveclmod WLVecWLMod
9 eqid ScalarW=ScalarW
10 9 lvecdrng WLVecScalarWDivRing
11 eqid 0ScalarW=0ScalarW
12 eqid 1ScalarW=1ScalarW
13 11 12 drngunz ScalarWDivRing1ScalarW0ScalarW
14 10 13 syl WLVec1ScalarW0ScalarW
15 8 14 jca WLVecWLMod1ScalarW0ScalarW
16 2 3 9 12 11 lbsind2 WLMod1ScalarW0ScalarWBJxB¬xNBx
17 15 16 syl3an1 WLVecBJxB¬xNBx
18 17 3expa WLVecBJxB¬xNBx
19 18 ralrimiva WLVecBJxB¬xNBx
20 5 7 19 3jca WLVecBJBVNB=VxB¬xNBx
21 simpr1 WLVecBVNB=VxB¬xNBxBV
22 simpr2 WLVecBVNB=VxB¬xNBxNB=V
23 id x=yx=y
24 sneq x=yx=y
25 24 difeq2d x=yBx=By
26 25 fveq2d x=yNBx=NBy
27 23 26 eleq12d x=yxNBxyNBy
28 27 notbid x=y¬xNBx¬yNBy
29 simplr3 WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWxB¬xNBx
30 simprl WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWyB
31 28 29 30 rspcdva WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarW¬yNBy
32 simpll WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWWLVec
33 simprr WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWzBaseScalarW0ScalarW
34 eldifsn zBaseScalarW0ScalarWzBaseScalarWz0ScalarW
35 33 34 sylib WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWzBaseScalarWz0ScalarW
36 21 adantr WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWBV
37 36 30 sseldd WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWyV
38 eqid W=W
39 eqid BaseScalarW=BaseScalarW
40 1 9 38 39 11 3 lspsnvs WLVeczBaseScalarWz0ScalarWyVNzWy=Ny
41 32 35 37 40 syl3anc WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWNzWy=Ny
42 41 sseq1d WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWNzWyNByNyNBy
43 eqid LSubSpW=LSubSpW
44 8 adantr WLVecBVNB=VxB¬xNBxWLMod
45 44 adantr WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWWLMod
46 36 ssdifssd WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWByV
47 1 43 3 lspcl WLModByVNByLSubSpW
48 45 46 47 syl2anc WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWNByLSubSpW
49 35 simpld WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWzBaseScalarW
50 1 9 38 39 lmodvscl WLModzBaseScalarWyVzWyV
51 45 49 37 50 syl3anc WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWzWyV
52 1 43 3 45 48 51 lspsnel5 WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWzWyNByNzWyNBy
53 1 43 3 45 48 37 lspsnel5 WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWyNByNyNBy
54 42 52 53 3bitr4d WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarWzWyNByyNBy
55 31 54 mtbird WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarW¬zWyNBy
56 55 ralrimivva WLVecBVNB=VxB¬xNBxyBzBaseScalarW0ScalarW¬zWyNBy
57 1 9 38 39 2 3 11 islbs WLVecBJBVNB=VyBzBaseScalarW0ScalarW¬zWyNBy
58 57 adantr WLVecBVNB=VxB¬xNBxBJBVNB=VyBzBaseScalarW0ScalarW¬zWyNBy
59 21 22 56 58 mpbir3and WLVecBVNB=VxB¬xNBxBJ
60 20 59 impbida WLVecBJBVNB=VxB¬xNBx