Metamath Proof Explorer


Theorem islpcn

Description: A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses islpcn.s φS
islpcn.p φP
Assertion islpcn φPlimPtTopOpenfldSe+xSPxP<e

Proof

Step Hyp Ref Expression
1 islpcn.s φS
2 islpcn.p φP
3 eqid TopOpenfld=TopOpenfld
4 3 cnfldtop TopOpenfldTop
5 4 a1i φTopOpenfldTop
6 unicntop =TopOpenfld
7 6 islp2 TopOpenfldTopSPPlimPtTopOpenfldSnneiTopOpenfldPnSP
8 5 1 2 7 syl3anc φPlimPtTopOpenfldSnneiTopOpenfldPnSP
9 cnxmet abs∞Met
10 9 a1i φe+abs∞Met
11 2 adantr φe+P
12 simpr φe+e+
13 3 cnfldtopn TopOpenfld=MetOpenabs
14 13 blnei abs∞MetPe+PballabseneiTopOpenfldP
15 10 11 12 14 syl3anc φe+PballabseneiTopOpenfldP
16 15 adantlr φnneiTopOpenfldPnSPe+PballabseneiTopOpenfldP
17 simplr φnneiTopOpenfldPnSPe+nneiTopOpenfldPnSP
18 ineq1 n=PballabsenSP=PballabseSP
19 18 neeq1d n=PballabsenSPPballabseSP
20 19 rspcva PballabseneiTopOpenfldPnneiTopOpenfldPnSPPballabseSP
21 16 17 20 syl2anc φnneiTopOpenfldPnSPe+PballabseSP
22 n0 PballabseSPxxPballabseSP
23 21 22 sylib φnneiTopOpenfldPnSPe+xxPballabseSP
24 elinel2 xPballabseSPxSP
25 24 adantl φe+xPballabseSPxSP
26 1 adantr φxPballabseSPS
27 24 eldifad xPballabseSPxS
28 27 adantl φxPballabseSPxS
29 26 28 sseldd φxPballabseSPx
30 2 adantr φxPballabseSPP
31 29 30 abssubd φxPballabseSPxP=Px
32 eqid abs=abs
33 32 cnmetdval PxPabsx=Px
34 30 29 33 syl2anc φxPballabseSPPabsx=Px
35 31 34 eqtr4d φxPballabseSPxP=Pabsx
36 35 adantlr φe+xPballabseSPxP=Pabsx
37 elinel1 xPballabseSPxPballabse
38 37 adantl φe+xPballabseSPxPballabse
39 9 a1i φe+xPballabseSPabs∞Met
40 11 adantr φe+xPballabseSPP
41 rpxr e+e*
42 41 ad2antlr φe+xPballabseSPe*
43 elbl abs∞MetPe*xPballabsexPabsx<e
44 39 40 42 43 syl3anc φe+xPballabseSPxPballabsexPabsx<e
45 38 44 mpbid φe+xPballabseSPxPabsx<e
46 45 simprd φe+xPballabseSPPabsx<e
47 36 46 eqbrtrd φe+xPballabseSPxP<e
48 25 47 jca φe+xPballabseSPxSPxP<e
49 48 ex φe+xPballabseSPxSPxP<e
50 49 adantlr φnneiTopOpenfldPnSPe+xPballabseSPxSPxP<e
51 50 eximdv φnneiTopOpenfldPnSPe+xxPballabseSPxxSPxP<e
52 23 51 mpd φnneiTopOpenfldPnSPe+xxSPxP<e
53 df-rex xSPxP<exxSPxP<e
54 52 53 sylibr φnneiTopOpenfldPnSPe+xSPxP<e
55 54 ralrimiva φnneiTopOpenfldPnSPe+xSPxP<e
56 9 a1i φabs∞Met
57 13 neibl abs∞MetPnneiTopOpenfldPne+Pballabsen
58 56 2 57 syl2anc φnneiTopOpenfldPne+Pballabsen
59 58 simplbda φnneiTopOpenfldPe+Pballabsen
60 59 adantlr φe+xSPxP<enneiTopOpenfldPe+Pballabsen
61 nfv eφ
62 nfra1 ee+xSPxP<e
63 61 62 nfan eφe+xSPxP<e
64 nfv enneiTopOpenfldP
65 63 64 nfan eφe+xSPxP<enneiTopOpenfldP
66 nfv enSP
67 simp1l φe+xSPxP<ee+Pballabsenφ
68 simp2 φe+xSPxP<ee+Pballabsene+
69 67 68 jca φe+xSPxP<ee+Pballabsenφe+
70 rspa e+xSPxP<ee+xSPxP<e
71 70 adantll φe+xSPxP<ee+xSPxP<e
72 71 3adant3 φe+xSPxP<ee+PballabsenxSPxP<e
73 simp3 φe+xSPxP<ee+PballabsenPballabsen
74 53 biimpi xSPxP<exxSPxP<e
75 74 ad2antlr φe+xSPxP<ePballabsenxxSPxP<e
76 nfv xφe+
77 nfre1 xxSPxP<e
78 76 77 nfan xφe+xSPxP<e
79 nfv xPballabsen
80 78 79 nfan xφe+xSPxP<ePballabsen
81 simplr φe+PballabsenxSPxP<ePballabsen
82 1 adantr φxSPS
83 eldifi xSPxS
84 83 adantl φxSPxS
85 82 84 sseldd φxSPx
86 85 adantrr φxSPxP<ex
87 2 adantr φxSPP
88 87 85 33 syl2anc φxSPPabsx=Px
89 87 85 abssubd φxSPPx=xP
90 88 89 eqtrd φxSPPabsx=xP
91 90 adantrr φxSPxP<ePabsx=xP
92 simprr φxSPxP<exP<e
93 91 92 eqbrtrd φxSPxP<ePabsx<e
94 86 93 jca φxSPxP<exPabsx<e
95 94 adantlr φe+xSPxP<exPabsx<e
96 9 a1i φe+xSPxP<eabs∞Met
97 11 adantr φe+xSPxP<eP
98 41 ad2antlr φe+xSPxP<ee*
99 96 97 98 43 syl3anc φe+xSPxP<exPballabsexPabsx<e
100 95 99 mpbird φe+xSPxP<exPballabse
101 100 adantlr φe+PballabsenxSPxP<exPballabse
102 81 101 sseldd φe+PballabsenxSPxP<exn
103 simprl φe+PballabsenxSPxP<exSP
104 102 103 elind φe+PballabsenxSPxP<exnSP
105 104 ex φe+PballabsenxSPxP<exnSP
106 105 adantlr φe+xSPxP<ePballabsenxSPxP<exnSP
107 80 106 eximd φe+xSPxP<ePballabsenxxSPxP<exxnSP
108 75 107 mpd φe+xSPxP<ePballabsenxxnSP
109 n0 nSPxxnSP
110 108 109 sylibr φe+xSPxP<ePballabsennSP
111 69 72 73 110 syl21anc φe+xSPxP<ee+PballabsennSP
112 111 3exp φe+xSPxP<ee+PballabsennSP
113 112 adantr φe+xSPxP<enneiTopOpenfldPe+PballabsennSP
114 65 66 113 rexlimd φe+xSPxP<enneiTopOpenfldPe+PballabsennSP
115 60 114 mpd φe+xSPxP<enneiTopOpenfldPnSP
116 115 ralrimiva φe+xSPxP<enneiTopOpenfldPnSP
117 55 116 impbida φnneiTopOpenfldPnSPe+xSPxP<e
118 8 117 bitrd φPlimPtTopOpenfldSe+xSPxP<e