Metamath Proof Explorer


Theorem isomuspgr

Description: The isomorphy relation for two simple pseudographs. This corresponds to the definition in Bollobas p. 3. (Contributed by AV, 1-Dec-2022)

Ref Expression
Hypotheses isomushgr.v V=VtxA
isomushgr.w W=VtxB
isomushgr.e E=EdgA
isomushgr.k K=EdgB
Assertion isomuspgr AUSHGraphBUSHGraphAIsomGrBff:V1-1 ontoWaVbVabEfafbK

Proof

Step Hyp Ref Expression
1 isomushgr.v V=VtxA
2 isomushgr.w W=VtxB
3 isomushgr.e E=EdgA
4 isomushgr.k K=EdgB
5 uspgrushgr AUSHGraphAUSHGraph
6 uspgrushgr BUSHGraphBUSHGraph
7 1 2 3 4 isomushgr AUSHGraphBUSHGraphAIsomGrBff:V1-1 ontoWgg:E1-1 ontoKeEfe=ge
8 5 6 7 syl2an AUSHGraphBUSHGraphAIsomGrBff:V1-1 ontoWgg:E1-1 ontoKeEfe=ge
9 imaeq2 e=abfe=fab
10 fveq2 e=abge=gab
11 9 10 eqeq12d e=abfe=gefab=gab
12 11 rspccv eEfe=geabEfab=gab
13 12 adantl AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geabEfab=gab
14 13 imp AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geabEfab=gab
15 f1ofn f:V1-1 ontoWfFnV
16 15 ad3antlr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVfFnV
17 simprl AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVaV
18 simprr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVbV
19 fnimapr fFnVaVbVfab=fafb
20 16 17 18 19 syl3anc AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVfab=fafb
21 20 eqeq1d AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVfab=gabfafb=gab
22 21 adantr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=gefab=gabfafb=gab
23 22 adantr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geabEfab=gabfafb=gab
24 f1of g:E1-1 ontoKg:EK
25 24 ad3antlr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geg:EK
26 25 ffvelcdmda AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geabEgabK
27 eleq1 fafb=gabfafbKgabK
28 26 27 syl5ibrcom AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geabEfafb=gabfafbK
29 23 28 sylbid AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geabEfab=gabfafbK
30 14 29 mpd AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geabEfafbK
31 30 exp41 AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKaVbVeEfe=geabEfafbK
32 31 com23 AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVabEfafbK
33 32 impr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVabEfafbK
34 33 imp AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVabEfafbK
35 1 2 3 4 isomuspgrlem1 AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKabE
36 34 35 impbid AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVabEfafbK
37 36 ralrimivva AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVabEfafbK
38 37 ex AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVabEfafbK
39 38 exlimdv AUSHGraphBUSHGraphf:V1-1 ontoWgg:E1-1 ontoKeEfe=geaVbVabEfafbK
40 1 2 3 4 isomuspgrlem2 AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKgg:E1-1 ontoKeEfe=ge
41 39 40 impbid AUSHGraphBUSHGraphf:V1-1 ontoWgg:E1-1 ontoKeEfe=geaVbVabEfafbK
42 41 pm5.32da AUSHGraphBUSHGraphf:V1-1 ontoWgg:E1-1 ontoKeEfe=gef:V1-1 ontoWaVbVabEfafbK
43 42 exbidv AUSHGraphBUSHGraphff:V1-1 ontoWgg:E1-1 ontoKeEfe=geff:V1-1 ontoWaVbVabEfafbK
44 8 43 bitrd AUSHGraphBUSHGraphAIsomGrBff:V1-1 ontoWaVbVabEfafbK