Description: The isomorphy relation for two simple pseudographs. This corresponds to the definition in Bollobas p. 3. (Contributed by AV, 1-Dec-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isomushgr.v | |
|
isomushgr.w | |
||
isomushgr.e | |
||
isomushgr.k | |
||
Assertion | isomuspgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomushgr.v | |
|
2 | isomushgr.w | |
|
3 | isomushgr.e | |
|
4 | isomushgr.k | |
|
5 | uspgrushgr | |
|
6 | uspgrushgr | |
|
7 | 1 2 3 4 | isomushgr | |
8 | 5 6 7 | syl2an | |
9 | imaeq2 | |
|
10 | fveq2 | |
|
11 | 9 10 | eqeq12d | |
12 | 11 | rspccv | |
13 | 12 | adantl | |
14 | 13 | imp | |
15 | f1ofn | |
|
16 | 15 | ad3antlr | |
17 | simprl | |
|
18 | simprr | |
|
19 | fnimapr | |
|
20 | 16 17 18 19 | syl3anc | |
21 | 20 | eqeq1d | |
22 | 21 | adantr | |
23 | 22 | adantr | |
24 | f1of | |
|
25 | 24 | ad3antlr | |
26 | 25 | ffvelcdmda | |
27 | eleq1 | |
|
28 | 26 27 | syl5ibrcom | |
29 | 23 28 | sylbid | |
30 | 14 29 | mpd | |
31 | 30 | exp41 | |
32 | 31 | com23 | |
33 | 32 | impr | |
34 | 33 | imp | |
35 | 1 2 3 4 | isomuspgrlem1 | |
36 | 34 35 | impbid | |
37 | 36 | ralrimivva | |
38 | 37 | ex | |
39 | 38 | exlimdv | |
40 | 1 2 3 4 | isomuspgrlem2 | |
41 | 39 40 | impbid | |
42 | 41 | pm5.32da | |
43 | 42 | exbidv | |
44 | 8 43 | bitrd | |