| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issmfgt.s |
|
| 2 |
|
issmfgt.d |
|
| 3 |
1
|
adantr |
|
| 4 |
|
simpr |
|
| 5 |
3 4 2
|
smfdmss |
|
| 6 |
3 4 2
|
smff |
|
| 7 |
|
nfv |
|
| 8 |
|
nfv |
|
| 9 |
7 8
|
nfan |
|
| 10 |
3 5
|
restuni4 |
|
| 11 |
10
|
eqcomd |
|
| 12 |
11
|
rabeqdv |
|
| 13 |
12
|
adantr |
|
| 14 |
|
nfv |
|
| 15 |
|
nfv |
|
| 16 |
14 15
|
nfan |
|
| 17 |
|
nfv |
|
| 18 |
16 17
|
nfan |
|
| 19 |
|
nfv |
|
| 20 |
1
|
uniexd |
|
| 21 |
20
|
adantr |
|
| 22 |
|
simpr |
|
| 23 |
21 22
|
ssexd |
|
| 24 |
5 23
|
syldan |
|
| 25 |
|
eqid |
|
| 26 |
3 24 25
|
subsalsal |
|
| 27 |
26
|
adantr |
|
| 28 |
|
eqid |
|
| 29 |
6
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
10
|
adantr |
|
| 32 |
30 31
|
eleqtrd |
|
| 33 |
29 32
|
ffvelcdmd |
|
| 34 |
33
|
rexrd |
|
| 35 |
34
|
adantlr |
|
| 36 |
3 2
|
issmfle |
|
| 37 |
4 36
|
mpbid |
|
| 38 |
37
|
simp3d |
|
| 39 |
10
|
rabeqdv |
|
| 40 |
39
|
eleq1d |
|
| 41 |
40
|
ralbidv |
|
| 42 |
38 41
|
mpbird |
|
| 43 |
42
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
|
rspa |
|
| 46 |
43 44 45
|
syl2anc |
|
| 47 |
46
|
adantlr |
|
| 48 |
|
simpr |
|
| 49 |
18 19 27 28 35 47 48
|
salpreimalegt |
|
| 50 |
13 49
|
eqeltrd |
|
| 51 |
50
|
ex |
|
| 52 |
9 51
|
ralrimi |
|
| 53 |
5 6 52
|
3jca |
|
| 54 |
53
|
ex |
|
| 55 |
|
nfv |
|
| 56 |
|
nfv |
|
| 57 |
|
nfcv |
|
| 58 |
|
nfrab1 |
|
| 59 |
|
nfcv |
|
| 60 |
58 59
|
nfel |
|
| 61 |
57 60
|
nfralw |
|
| 62 |
55 56 61
|
nf3an |
|
| 63 |
14 62
|
nfan |
|
| 64 |
|
nfv |
|
| 65 |
|
nfv |
|
| 66 |
|
nfra1 |
|
| 67 |
64 65 66
|
nf3an |
|
| 68 |
7 67
|
nfan |
|
| 69 |
1
|
adantr |
|
| 70 |
|
simpr1 |
|
| 71 |
|
simpr2 |
|
| 72 |
|
simpr3 |
|
| 73 |
63 68 69 2 70 71 72
|
issmfgtlem |
|
| 74 |
73
|
ex |
|
| 75 |
54 74
|
impbid |
|
| 76 |
|
breq1 |
|
| 77 |
76
|
rabbidv |
|
| 78 |
|
fveq2 |
|
| 79 |
78
|
breq2d |
|
| 80 |
79
|
cbvrabv |
|
| 81 |
80
|
a1i |
|
| 82 |
77 81
|
eqtrd |
|
| 83 |
82
|
eleq1d |
|
| 84 |
83
|
cbvralvw |
|
| 85 |
84
|
3anbi3i |
|
| 86 |
85
|
a1i |
|
| 87 |
75 86
|
bitrd |
|