Metamath Proof Explorer


Theorem itg10a

Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg10a.1 φ F dom 1
itg10a.2 φ A
itg10a.3 φ vol * A = 0
itg10a.4 φ x A F x = 0
Assertion itg10a φ 1 F = 0

Proof

Step Hyp Ref Expression
1 itg10a.1 φ F dom 1
2 itg10a.2 φ A
3 itg10a.3 φ vol * A = 0
4 itg10a.4 φ x A F x = 0
5 itg1val F dom 1 1 F = k ran F 0 k vol F -1 k
6 1 5 syl φ 1 F = k ran F 0 k vol F -1 k
7 i1ff F dom 1 F :
8 1 7 syl φ F :
9 8 ffnd φ F Fn
10 9 adantr φ k ran F 0 F Fn
11 fniniseg F Fn x F -1 k x F x = k
12 10 11 syl φ k ran F 0 x F -1 k x F x = k
13 eldifsni k ran F 0 k 0
14 13 ad2antlr φ k ran F 0 x F x = k k 0
15 simprl φ k ran F 0 x F x = k x
16 eldif x A x ¬ x A
17 simplrr φ k ran F 0 x F x = k x A F x = k
18 4 ad4ant14 φ k ran F 0 x F x = k x A F x = 0
19 17 18 eqtr3d φ k ran F 0 x F x = k x A k = 0
20 19 ex φ k ran F 0 x F x = k x A k = 0
21 16 20 syl5bir φ k ran F 0 x F x = k x ¬ x A k = 0
22 15 21 mpand φ k ran F 0 x F x = k ¬ x A k = 0
23 22 necon1ad φ k ran F 0 x F x = k k 0 x A
24 14 23 mpd φ k ran F 0 x F x = k x A
25 24 ex φ k ran F 0 x F x = k x A
26 12 25 sylbid φ k ran F 0 x F -1 k x A
27 26 ssrdv φ k ran F 0 F -1 k A
28 2 adantr φ k ran F 0 A
29 27 28 sstrd φ k ran F 0 F -1 k
30 3 adantr φ k ran F 0 vol * A = 0
31 ovolssnul F -1 k A A vol * A = 0 vol * F -1 k = 0
32 27 28 30 31 syl3anc φ k ran F 0 vol * F -1 k = 0
33 nulmbl F -1 k vol * F -1 k = 0 F -1 k dom vol
34 29 32 33 syl2anc φ k ran F 0 F -1 k dom vol
35 mblvol F -1 k dom vol vol F -1 k = vol * F -1 k
36 34 35 syl φ k ran F 0 vol F -1 k = vol * F -1 k
37 36 32 eqtrd φ k ran F 0 vol F -1 k = 0
38 37 oveq2d φ k ran F 0 k vol F -1 k = k 0
39 8 frnd φ ran F
40 39 ssdifssd φ ran F 0
41 40 sselda φ k ran F 0 k
42 41 recnd φ k ran F 0 k
43 42 mul01d φ k ran F 0 k 0 = 0
44 38 43 eqtrd φ k ran F 0 k vol F -1 k = 0
45 44 sumeq2dv φ k ran F 0 k vol F -1 k = k ran F 0 0
46 i1frn F dom 1 ran F Fin
47 1 46 syl φ ran F Fin
48 difss ran F 0 ran F
49 ssfi ran F Fin ran F 0 ran F ran F 0 Fin
50 47 48 49 sylancl φ ran F 0 Fin
51 50 olcd φ ran F 0 0 ran F 0 Fin
52 sumz ran F 0 0 ran F 0 Fin k ran F 0 0 = 0
53 51 52 syl φ k ran F 0 0 = 0
54 45 53 eqtrd φ k ran F 0 k vol F -1 k = 0
55 6 54 eqtrd φ 1 F = 0