Metamath Proof Explorer


Theorem itg10a

Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg10a.1 φFdom1
itg10a.2 φA
itg10a.3 φvol*A=0
itg10a.4 φxAFx=0
Assertion itg10a φ1F=0

Proof

Step Hyp Ref Expression
1 itg10a.1 φFdom1
2 itg10a.2 φA
3 itg10a.3 φvol*A=0
4 itg10a.4 φxAFx=0
5 itg1val Fdom11F=kranF0kvolF-1k
6 1 5 syl φ1F=kranF0kvolF-1k
7 i1ff Fdom1F:
8 1 7 syl φF:
9 8 ffnd φFFn
10 9 adantr φkranF0FFn
11 fniniseg FFnxF-1kxFx=k
12 10 11 syl φkranF0xF-1kxFx=k
13 eldifsni kranF0k0
14 13 ad2antlr φkranF0xFx=kk0
15 simprl φkranF0xFx=kx
16 eldif xAx¬xA
17 simplrr φkranF0xFx=kxAFx=k
18 4 ad4ant14 φkranF0xFx=kxAFx=0
19 17 18 eqtr3d φkranF0xFx=kxAk=0
20 19 ex φkranF0xFx=kxAk=0
21 16 20 biimtrrid φkranF0xFx=kx¬xAk=0
22 15 21 mpand φkranF0xFx=k¬xAk=0
23 22 necon1ad φkranF0xFx=kk0xA
24 14 23 mpd φkranF0xFx=kxA
25 24 ex φkranF0xFx=kxA
26 12 25 sylbid φkranF0xF-1kxA
27 26 ssrdv φkranF0F-1kA
28 2 adantr φkranF0A
29 27 28 sstrd φkranF0F-1k
30 3 adantr φkranF0vol*A=0
31 ovolssnul F-1kAAvol*A=0vol*F-1k=0
32 27 28 30 31 syl3anc φkranF0vol*F-1k=0
33 nulmbl F-1kvol*F-1k=0F-1kdomvol
34 29 32 33 syl2anc φkranF0F-1kdomvol
35 mblvol F-1kdomvolvolF-1k=vol*F-1k
36 34 35 syl φkranF0volF-1k=vol*F-1k
37 36 32 eqtrd φkranF0volF-1k=0
38 37 oveq2d φkranF0kvolF-1k=k0
39 8 frnd φranF
40 39 ssdifssd φranF0
41 40 sselda φkranF0k
42 41 recnd φkranF0k
43 42 mul01d φkranF0k0=0
44 38 43 eqtrd φkranF0kvolF-1k=0
45 44 sumeq2dv φkranF0kvolF-1k=kranF00
46 i1frn Fdom1ranFFin
47 1 46 syl φranFFin
48 difss ranF0ranF
49 ssfi ranFFinranF0ranFranF0Fin
50 47 48 49 sylancl φranF0Fin
51 50 olcd φranF00ranF0Fin
52 sumz ranF00ranF0FinkranF00=0
53 51 52 syl φkranF00=0
54 45 53 eqtrd φkranF0kvolF-1k=0
55 6 54 eqtrd φ1F=0