Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
itgaddnc
Next ⟩
iblsubnc
Metamath Proof Explorer
Ascii
Unicode
Theorem
itgaddnc
Description:
Choice-free analogue of
itgadd
.
(Contributed by
Brendan Leahy
, 11-Nov-2017)
Ref
Expression
Hypotheses
ibladdnc.1
⊢
φ
∧
x
∈
A
→
B
∈
V
ibladdnc.2
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
ibladdnc.3
⊢
φ
∧
x
∈
A
→
C
∈
V
ibladdnc.4
⊢
φ
→
x
∈
A
⟼
C
∈
𝐿
1
ibladdnc.m
⊢
φ
→
x
∈
A
⟼
B
+
C
∈
MblFn
Assertion
itgaddnc
⊢
φ
→
∫
A
B
+
C
d
x
=
∫
A
B
d
x
+
∫
A
C
d
x
Proof
Step
Hyp
Ref
Expression
1
ibladdnc.1
⊢
φ
∧
x
∈
A
→
B
∈
V
2
ibladdnc.2
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
3
ibladdnc.3
⊢
φ
∧
x
∈
A
→
C
∈
V
4
ibladdnc.4
⊢
φ
→
x
∈
A
⟼
C
∈
𝐿
1
5
ibladdnc.m
⊢
φ
→
x
∈
A
⟼
B
+
C
∈
MblFn
6
iblmbf
⊢
x
∈
A
⟼
B
∈
𝐿
1
→
x
∈
A
⟼
B
∈
MblFn
7
2
6
syl
⊢
φ
→
x
∈
A
⟼
B
∈
MblFn
8
7
1
mbfmptcl
⊢
φ
∧
x
∈
A
→
B
∈
ℂ
9
iblmbf
⊢
x
∈
A
⟼
C
∈
𝐿
1
→
x
∈
A
⟼
C
∈
MblFn
10
4
9
syl
⊢
φ
→
x
∈
A
⟼
C
∈
MblFn
11
10
3
mbfmptcl
⊢
φ
∧
x
∈
A
→
C
∈
ℂ
12
8
11
readdd
⊢
φ
∧
x
∈
A
→
ℜ
B
+
C
=
ℜ
B
+
ℜ
C
13
12
itgeq2dv
⊢
φ
→
∫
A
ℜ
B
+
C
d
x
=
∫
A
ℜ
B
+
ℜ
C
d
x
14
8
recld
⊢
φ
∧
x
∈
A
→
ℜ
B
∈
ℝ
15
8
iblcn
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
↔
x
∈
A
⟼
ℜ
B
∈
𝐿
1
∧
x
∈
A
⟼
ℑ
B
∈
𝐿
1
16
2
15
mpbid
⊢
φ
→
x
∈
A
⟼
ℜ
B
∈
𝐿
1
∧
x
∈
A
⟼
ℑ
B
∈
𝐿
1
17
16
simpld
⊢
φ
→
x
∈
A
⟼
ℜ
B
∈
𝐿
1
18
11
recld
⊢
φ
∧
x
∈
A
→
ℜ
C
∈
ℝ
19
11
iblcn
⊢
φ
→
x
∈
A
⟼
C
∈
𝐿
1
↔
x
∈
A
⟼
ℜ
C
∈
𝐿
1
∧
x
∈
A
⟼
ℑ
C
∈
𝐿
1
20
4
19
mpbid
⊢
φ
→
x
∈
A
⟼
ℜ
C
∈
𝐿
1
∧
x
∈
A
⟼
ℑ
C
∈
𝐿
1
21
20
simpld
⊢
φ
→
x
∈
A
⟼
ℜ
C
∈
𝐿
1
22
8
11
addcld
⊢
φ
∧
x
∈
A
→
B
+
C
∈
ℂ
23
eqidd
⊢
φ
→
x
∈
A
⟼
B
+
C
=
x
∈
A
⟼
B
+
C
24
ref
⊢
ℜ
:
ℂ
⟶
ℝ
25
24
a1i
⊢
φ
→
ℜ
:
ℂ
⟶
ℝ
26
25
feqmptd
⊢
φ
→
ℜ
=
y
∈
ℂ
⟼
ℜ
y
27
fveq2
⊢
y
=
B
+
C
→
ℜ
y
=
ℜ
B
+
C
28
22
23
26
27
fmptco
⊢
φ
→
ℜ
∘
x
∈
A
⟼
B
+
C
=
x
∈
A
⟼
ℜ
B
+
C
29
12
mpteq2dva
⊢
φ
→
x
∈
A
⟼
ℜ
B
+
C
=
x
∈
A
⟼
ℜ
B
+
ℜ
C
30
28
29
eqtrd
⊢
φ
→
ℜ
∘
x
∈
A
⟼
B
+
C
=
x
∈
A
⟼
ℜ
B
+
ℜ
C
31
22
fmpttd
⊢
φ
→
x
∈
A
⟼
B
+
C
:
A
⟶
ℂ
32
ismbfcn
⊢
x
∈
A
⟼
B
+
C
:
A
⟶
ℂ
→
x
∈
A
⟼
B
+
C
∈
MblFn
↔
ℜ
∘
x
∈
A
⟼
B
+
C
∈
MblFn
∧
ℑ
∘
x
∈
A
⟼
B
+
C
∈
MblFn
33
31
32
syl
⊢
φ
→
x
∈
A
⟼
B
+
C
∈
MblFn
↔
ℜ
∘
x
∈
A
⟼
B
+
C
∈
MblFn
∧
ℑ
∘
x
∈
A
⟼
B
+
C
∈
MblFn
34
5
33
mpbid
⊢
φ
→
ℜ
∘
x
∈
A
⟼
B
+
C
∈
MblFn
∧
ℑ
∘
x
∈
A
⟼
B
+
C
∈
MblFn
35
34
simpld
⊢
φ
→
ℜ
∘
x
∈
A
⟼
B
+
C
∈
MblFn
36
30
35
eqeltrrd
⊢
φ
→
x
∈
A
⟼
ℜ
B
+
ℜ
C
∈
MblFn
37
14
17
18
21
36
14
18
itgaddnclem2
⊢
φ
→
∫
A
ℜ
B
+
ℜ
C
d
x
=
∫
A
ℜ
B
d
x
+
∫
A
ℜ
C
d
x
38
13
37
eqtrd
⊢
φ
→
∫
A
ℜ
B
+
C
d
x
=
∫
A
ℜ
B
d
x
+
∫
A
ℜ
C
d
x
39
8
11
imaddd
⊢
φ
∧
x
∈
A
→
ℑ
B
+
C
=
ℑ
B
+
ℑ
C
40
39
itgeq2dv
⊢
φ
→
∫
A
ℑ
B
+
C
d
x
=
∫
A
ℑ
B
+
ℑ
C
d
x
41
8
imcld
⊢
φ
∧
x
∈
A
→
ℑ
B
∈
ℝ
42
16
simprd
⊢
φ
→
x
∈
A
⟼
ℑ
B
∈
𝐿
1
43
11
imcld
⊢
φ
∧
x
∈
A
→
ℑ
C
∈
ℝ
44
20
simprd
⊢
φ
→
x
∈
A
⟼
ℑ
C
∈
𝐿
1
45
imf
⊢
ℑ
:
ℂ
⟶
ℝ
46
45
a1i
⊢
φ
→
ℑ
:
ℂ
⟶
ℝ
47
46
feqmptd
⊢
φ
→
ℑ
=
y
∈
ℂ
⟼
ℑ
y
48
fveq2
⊢
y
=
B
+
C
→
ℑ
y
=
ℑ
B
+
C
49
22
23
47
48
fmptco
⊢
φ
→
ℑ
∘
x
∈
A
⟼
B
+
C
=
x
∈
A
⟼
ℑ
B
+
C
50
39
mpteq2dva
⊢
φ
→
x
∈
A
⟼
ℑ
B
+
C
=
x
∈
A
⟼
ℑ
B
+
ℑ
C
51
49
50
eqtrd
⊢
φ
→
ℑ
∘
x
∈
A
⟼
B
+
C
=
x
∈
A
⟼
ℑ
B
+
ℑ
C
52
34
simprd
⊢
φ
→
ℑ
∘
x
∈
A
⟼
B
+
C
∈
MblFn
53
51
52
eqeltrrd
⊢
φ
→
x
∈
A
⟼
ℑ
B
+
ℑ
C
∈
MblFn
54
41
42
43
44
53
41
43
itgaddnclem2
⊢
φ
→
∫
A
ℑ
B
+
ℑ
C
d
x
=
∫
A
ℑ
B
d
x
+
∫
A
ℑ
C
d
x
55
40
54
eqtrd
⊢
φ
→
∫
A
ℑ
B
+
C
d
x
=
∫
A
ℑ
B
d
x
+
∫
A
ℑ
C
d
x
56
55
oveq2d
⊢
φ
→
i
∫
A
ℑ
B
+
C
d
x
=
i
∫
A
ℑ
B
d
x
+
∫
A
ℑ
C
d
x
57
ax-icn
⊢
i
∈
ℂ
58
57
a1i
⊢
φ
→
i
∈
ℂ
59
41
42
itgcl
⊢
φ
→
∫
A
ℑ
B
d
x
∈
ℂ
60
43
44
itgcl
⊢
φ
→
∫
A
ℑ
C
d
x
∈
ℂ
61
58
59
60
adddid
⊢
φ
→
i
∫
A
ℑ
B
d
x
+
∫
A
ℑ
C
d
x
=
i
∫
A
ℑ
B
d
x
+
i
∫
A
ℑ
C
d
x
62
56
61
eqtrd
⊢
φ
→
i
∫
A
ℑ
B
+
C
d
x
=
i
∫
A
ℑ
B
d
x
+
i
∫
A
ℑ
C
d
x
63
38
62
oveq12d
⊢
φ
→
∫
A
ℜ
B
+
C
d
x
+
i
∫
A
ℑ
B
+
C
d
x
=
∫
A
ℜ
B
d
x
+
∫
A
ℜ
C
d
x
+
i
∫
A
ℑ
B
d
x
+
i
∫
A
ℑ
C
d
x
64
14
17
itgcl
⊢
φ
→
∫
A
ℜ
B
d
x
∈
ℂ
65
18
21
itgcl
⊢
φ
→
∫
A
ℜ
C
d
x
∈
ℂ
66
mulcl
⊢
i
∈
ℂ
∧
∫
A
ℑ
B
d
x
∈
ℂ
→
i
∫
A
ℑ
B
d
x
∈
ℂ
67
57
59
66
sylancr
⊢
φ
→
i
∫
A
ℑ
B
d
x
∈
ℂ
68
mulcl
⊢
i
∈
ℂ
∧
∫
A
ℑ
C
d
x
∈
ℂ
→
i
∫
A
ℑ
C
d
x
∈
ℂ
69
57
60
68
sylancr
⊢
φ
→
i
∫
A
ℑ
C
d
x
∈
ℂ
70
64
65
67
69
add4d
⊢
φ
→
∫
A
ℜ
B
d
x
+
∫
A
ℜ
C
d
x
+
i
∫
A
ℑ
B
d
x
+
i
∫
A
ℑ
C
d
x
=
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
+
∫
A
ℜ
C
d
x
+
i
∫
A
ℑ
C
d
x
71
63
70
eqtrd
⊢
φ
→
∫
A
ℜ
B
+
C
d
x
+
i
∫
A
ℑ
B
+
C
d
x
=
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
+
∫
A
ℜ
C
d
x
+
i
∫
A
ℑ
C
d
x
72
ovexd
⊢
φ
∧
x
∈
A
→
B
+
C
∈
V
73
1
2
3
4
5
ibladdnc
⊢
φ
→
x
∈
A
⟼
B
+
C
∈
𝐿
1
74
72
73
itgcnval
⊢
φ
→
∫
A
B
+
C
d
x
=
∫
A
ℜ
B
+
C
d
x
+
i
∫
A
ℑ
B
+
C
d
x
75
1
2
itgcnval
⊢
φ
→
∫
A
B
d
x
=
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
76
3
4
itgcnval
⊢
φ
→
∫
A
C
d
x
=
∫
A
ℜ
C
d
x
+
i
∫
A
ℑ
C
d
x
77
75
76
oveq12d
⊢
φ
→
∫
A
B
d
x
+
∫
A
C
d
x
=
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
+
∫
A
ℜ
C
d
x
+
i
∫
A
ℑ
C
d
x
78
71
74
77
3eqtr4d
⊢
φ
→
∫
A
B
+
C
d
x
=
∫
A
B
d
x
+
∫
A
C
d
x