Metamath Proof Explorer


Theorem itgconst

Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Assertion itgconst AdomvolvolABABdx=BvolA

Proof

Step Hyp Ref Expression
1 simpl y=BxAy=B
2 1 itgeq2dv y=BAydx=ABdx
3 oveq1 y=ByvolA=BvolA
4 2 3 eqeq12d y=BAydx=yvolAABdx=BvolA
5 simplr AdomvolvolAByxAy
6 fconstmpt A×y=xAy
7 simpl1 AdomvolvolAByAdomvol
8 simp2 AdomvolvolABvolA
9 8 adantr AdomvolvolAByvolA
10 simpr AdomvolvolAByy
11 10 recnd AdomvolvolAByy
12 iblconst AdomvolvolAyA×y𝐿1
13 7 9 11 12 syl3anc AdomvolvolAByA×y𝐿1
14 6 13 eqeltrrid AdomvolvolAByxAy𝐿1
15 5 14 itgrevallem1 AdomvolvolAByAydx=2xifxA0yy02xifxA0yy0
16 ifan ifxA0yy0=ifxAif0yy00
17 16 mpteq2i xifxA0yy0=xifxAif0yy00
18 17 fveq2i 2xifxA0yy0=2xifxAif0yy00
19 0re 0
20 ifcl y0if0yy0
21 10 19 20 sylancl AdomvolvolAByif0yy0
22 max1 0y0if0yy0
23 19 10 22 sylancr AdomvolvolABy0if0yy0
24 elrege0 if0yy00+∞if0yy00if0yy0
25 21 23 24 sylanbrc AdomvolvolAByif0yy00+∞
26 itg2const AdomvolvolAif0yy00+∞2xifxAif0yy00=if0yy0volA
27 7 9 25 26 syl3anc AdomvolvolABy2xifxAif0yy00=if0yy0volA
28 18 27 eqtrid AdomvolvolABy2xifxA0yy0=if0yy0volA
29 ifan ifxA0yy0=ifxAif0yy00
30 29 mpteq2i xifxA0yy0=xifxAif0yy00
31 30 fveq2i 2xifxA0yy0=2xifxAif0yy00
32 renegcl yy
33 32 adantl AdomvolvolAByy
34 ifcl y0if0yy0
35 33 19 34 sylancl AdomvolvolAByif0yy0
36 max1 0y0if0yy0
37 19 33 36 sylancr AdomvolvolABy0if0yy0
38 elrege0 if0yy00+∞if0yy00if0yy0
39 35 37 38 sylanbrc AdomvolvolAByif0yy00+∞
40 itg2const AdomvolvolAif0yy00+∞2xifxAif0yy00=if0yy0volA
41 7 9 39 40 syl3anc AdomvolvolABy2xifxAif0yy00=if0yy0volA
42 31 41 eqtrid AdomvolvolABy2xifxA0yy0=if0yy0volA
43 28 42 oveq12d AdomvolvolABy2xifxA0yy02xifxA0yy0=if0yy0volAif0yy0volA
44 21 recnd AdomvolvolAByif0yy0
45 35 recnd AdomvolvolAByif0yy0
46 8 recnd AdomvolvolABvolA
47 46 adantr AdomvolvolAByvolA
48 44 45 47 subdird AdomvolvolAByif0yy0if0yy0volA=if0yy0volAif0yy0volA
49 max0sub yif0yy0if0yy0=y
50 49 adantl AdomvolvolAByif0yy0if0yy0=y
51 50 oveq1d AdomvolvolAByif0yy0if0yy0volA=yvolA
52 43 48 51 3eqtr2rd AdomvolvolAByyvolA=2xifxA0yy02xifxA0yy0
53 15 52 eqtr4d AdomvolvolAByAydx=yvolA
54 53 ralrimiva AdomvolvolAByAydx=yvolA
55 recl BB
56 55 3ad2ant3 AdomvolvolABB
57 4 54 56 rspcdva AdomvolvolABABdx=BvolA
58 simpl y=BxAy=B
59 58 itgeq2dv y=BAydx=ABdx
60 oveq1 y=ByvolA=BvolA
61 59 60 eqeq12d y=BAydx=yvolAABdx=BvolA
62 imcl BB
63 62 3ad2ant3 AdomvolvolABB
64 61 54 63 rspcdva AdomvolvolABABdx=BvolA
65 64 oveq2d AdomvolvolABiABdx=iBvolA
66 ax-icn i
67 66 a1i AdomvolvolABi
68 63 recnd AdomvolvolABB
69 67 68 46 mulassd AdomvolvolABiBvolA=iBvolA
70 65 69 eqtr4d AdomvolvolABiABdx=iBvolA
71 57 70 oveq12d AdomvolvolABABdx+iABdx=BvolA+iBvolA
72 56 recnd AdomvolvolABB
73 mulcl iBiB
74 66 68 73 sylancr AdomvolvolABiB
75 72 74 46 adddird AdomvolvolABB+iBvolA=BvolA+iBvolA
76 71 75 eqtr4d AdomvolvolABABdx+iABdx=B+iBvolA
77 simpl3 AdomvolvolABxAB
78 fconstmpt A×B=xAB
79 iblconst AdomvolvolABA×B𝐿1
80 78 79 eqeltrrid AdomvolvolABxAB𝐿1
81 77 80 itgcnval AdomvolvolABABdx=ABdx+iABdx
82 replim BB=B+iB
83 82 3ad2ant3 AdomvolvolABB=B+iB
84 83 oveq1d AdomvolvolABBvolA=B+iBvolA
85 76 81 84 3eqtr4d AdomvolvolABABdx=BvolA