Metamath Proof Explorer


Theorem itgle

Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itgle.1 φxAB𝐿1
itgle.2 φxAC𝐿1
itgle.3 φxAB
itgle.4 φxAC
itgle.5 φxABC
Assertion itgle φABdxACdx

Proof

Step Hyp Ref Expression
1 itgle.1 φxAB𝐿1
2 itgle.2 φxAC𝐿1
3 itgle.3 φxAB
4 itgle.4 φxAC
5 itgle.5 φxABC
6 3 iblrelem φxAB𝐿1xABMblFn2xifxA0BB02xifxA0BB0
7 1 6 mpbid φxABMblFn2xifxA0BB02xifxA0BB0
8 7 simp2d φ2xifxA0BB0
9 4 iblrelem φxAC𝐿1xACMblFn2xifxA0CC02xifxA0CC0
10 2 9 mpbid φxACMblFn2xifxA0CC02xifxA0CC0
11 10 simp3d φ2xifxA0CC0
12 10 simp2d φ2xifxA0CC0
13 7 simp3d φ2xifxA0BB0
14 3 ad2ant2r φxxA0BB
15 14 rexrd φxxA0BB*
16 simprr φxxA0B0B
17 elxrge0 B0+∞B*0B
18 15 16 17 sylanbrc φxxA0BB0+∞
19 0e0iccpnf 00+∞
20 19 a1i φx¬xA0B00+∞
21 18 20 ifclda φxifxA0BB00+∞
22 21 fmpttd φxifxA0BB0:0+∞
23 4 ad2ant2r φxxA0CC
24 23 rexrd φxxA0CC*
25 simprr φxxA0C0C
26 elxrge0 C0+∞C*0C
27 24 25 26 sylanbrc φxxA0CC0+∞
28 19 a1i φx¬xA0C00+∞
29 27 28 ifclda φxifxA0CC00+∞
30 29 fmpttd φxifxA0CC0:0+∞
31 0re 0
32 max1 0C0if0CC0
33 31 4 32 sylancr φxA0if0CC0
34 ifcl C0if0CC0
35 4 31 34 sylancl φxAif0CC0
36 max2 0CCif0CC0
37 31 4 36 sylancr φxACif0CC0
38 3 4 35 5 37 letrd φxABif0CC0
39 maxle 0Bif0CC0if0BB0if0CC00if0CC0Bif0CC0
40 31 3 35 39 mp3an2i φxAif0BB0if0CC00if0CC0Bif0CC0
41 33 38 40 mpbir2and φxAif0BB0if0CC0
42 iftrue xAifxAif0BB00=if0BB0
43 42 adantl φxAifxAif0BB00=if0BB0
44 iftrue xAifxAif0CC00=if0CC0
45 44 adantl φxAifxAif0CC00=if0CC0
46 41 43 45 3brtr4d φxAifxAif0BB00ifxAif0CC00
47 46 ex φxAifxAif0BB00ifxAif0CC00
48 0le0 00
49 48 a1i ¬xA00
50 iffalse ¬xAifxAif0BB00=0
51 iffalse ¬xAifxAif0CC00=0
52 49 50 51 3brtr4d ¬xAifxAif0BB00ifxAif0CC00
53 47 52 pm2.61d1 φifxAif0BB00ifxAif0CC00
54 ifan ifxA0BB0=ifxAif0BB00
55 ifan ifxA0CC0=ifxAif0CC00
56 53 54 55 3brtr4g φifxA0BB0ifxA0CC0
57 56 ralrimivw φxifxA0BB0ifxA0CC0
58 reex V
59 58 a1i φV
60 eqidd φxifxA0BB0=xifxA0BB0
61 eqidd φxifxA0CC0=xifxA0CC0
62 59 21 29 60 61 ofrfval2 φxifxA0BB0fxifxA0CC0xifxA0BB0ifxA0CC0
63 57 62 mpbird φxifxA0BB0fxifxA0CC0
64 itg2le xifxA0BB0:0+∞xifxA0CC0:0+∞xifxA0BB0fxifxA0CC02xifxA0BB02xifxA0CC0
65 22 30 63 64 syl3anc φ2xifxA0BB02xifxA0CC0
66 4 renegcld φxAC
67 66 ad2ant2r φxxA0CC
68 67 rexrd φxxA0CC*
69 simprr φxxA0C0C
70 elxrge0 C0+∞C*0C
71 68 69 70 sylanbrc φxxA0CC0+∞
72 19 a1i φx¬xA0C00+∞
73 71 72 ifclda φxifxA0CC00+∞
74 73 fmpttd φxifxA0CC0:0+∞
75 3 renegcld φxAB
76 75 ad2ant2r φxxA0BB
77 76 rexrd φxxA0BB*
78 simprr φxxA0B0B
79 elxrge0 B0+∞B*0B
80 77 78 79 sylanbrc φxxA0BB0+∞
81 19 a1i φx¬xA0B00+∞
82 80 81 ifclda φxifxA0BB00+∞
83 82 fmpttd φxifxA0BB0:0+∞
84 max1 0B0if0BB0
85 31 75 84 sylancr φxA0if0BB0
86 ifcl B0if0BB0
87 75 31 86 sylancl φxAif0BB0
88 3 4 lenegd φxABCCB
89 5 88 mpbid φxACB
90 max2 0BBif0BB0
91 31 75 90 sylancr φxABif0BB0
92 66 75 87 89 91 letrd φxACif0BB0
93 maxle 0Cif0BB0if0CC0if0BB00if0BB0Cif0BB0
94 31 66 87 93 mp3an2i φxAif0CC0if0BB00if0BB0Cif0BB0
95 85 92 94 mpbir2and φxAif0CC0if0BB0
96 iftrue xAifxAif0CC00=if0CC0
97 96 adantl φxAifxAif0CC00=if0CC0
98 iftrue xAifxAif0BB00=if0BB0
99 98 adantl φxAifxAif0BB00=if0BB0
100 95 97 99 3brtr4d φxAifxAif0CC00ifxAif0BB00
101 100 ex φxAifxAif0CC00ifxAif0BB00
102 iffalse ¬xAifxAif0CC00=0
103 iffalse ¬xAifxAif0BB00=0
104 49 102 103 3brtr4d ¬xAifxAif0CC00ifxAif0BB00
105 101 104 pm2.61d1 φifxAif0CC00ifxAif0BB00
106 ifan ifxA0CC0=ifxAif0CC00
107 ifan ifxA0BB0=ifxAif0BB00
108 105 106 107 3brtr4g φifxA0CC0ifxA0BB0
109 108 ralrimivw φxifxA0CC0ifxA0BB0
110 eqidd φxifxA0CC0=xifxA0CC0
111 eqidd φxifxA0BB0=xifxA0BB0
112 59 73 82 110 111 ofrfval2 φxifxA0CC0fxifxA0BB0xifxA0CC0ifxA0BB0
113 109 112 mpbird φxifxA0CC0fxifxA0BB0
114 itg2le xifxA0CC0:0+∞xifxA0BB0:0+∞xifxA0CC0fxifxA0BB02xifxA0CC02xifxA0BB0
115 74 83 113 114 syl3anc φ2xifxA0CC02xifxA0BB0
116 8 11 12 13 65 115 le2subd φ2xifxA0BB02xifxA0BB02xifxA0CC02xifxA0CC0
117 3 1 itgrevallem1 φABdx=2xifxA0BB02xifxA0BB0
118 4 2 itgrevallem1 φACdx=2xifxA0CC02xifxA0CC0
119 116 117 118 3brtr4d φABdxACdx