Metamath Proof Explorer


Theorem ivth2

Description: The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypotheses ivth.1 φA
ivth.2 φB
ivth.3 φU
ivth.4 φA<B
ivth.5 φABD
ivth.7 φF:Dcn
ivth.8 φxABFx
ivth2.9 φFB<UU<FA
Assertion ivth2 φcABFc=U

Proof

Step Hyp Ref Expression
1 ivth.1 φA
2 ivth.2 φB
3 ivth.3 φU
4 ivth.4 φA<B
5 ivth.5 φABD
6 ivth.7 φF:Dcn
7 ivth.8 φxABFx
8 ivth2.9 φFB<UU<FA
9 3 renegcld φU
10 eqid yDFy=yDFy
11 10 negfcncf F:DcnyDFy:Dcn
12 6 11 syl φyDFy:Dcn
13 5 sselda φxABxD
14 fveq2 y=xFy=Fx
15 14 negeqd y=xFy=Fx
16 negex FxV
17 15 10 16 fvmpt xDyDFyx=Fx
18 13 17 syl φxAByDFyx=Fx
19 7 renegcld φxABFx
20 18 19 eqeltrd φxAByDFyx
21 1 rexrd φA*
22 2 rexrd φB*
23 1 2 4 ltled φAB
24 lbicc2 A*B*ABAAB
25 21 22 23 24 syl3anc φAAB
26 5 25 sseldd φAD
27 fveq2 y=AFy=FA
28 27 negeqd y=AFy=FA
29 negex FAV
30 28 10 29 fvmpt ADyDFyA=FA
31 26 30 syl φyDFyA=FA
32 8 simprd φU<FA
33 fveq2 x=AFx=FA
34 33 eleq1d x=AFxFA
35 7 ralrimiva φxABFx
36 34 35 25 rspcdva φFA
37 3 36 ltnegd φU<FAFA<U
38 32 37 mpbid φFA<U
39 31 38 eqbrtrd φyDFyA<U
40 8 simpld φFB<U
41 fveq2 x=BFx=FB
42 41 eleq1d x=BFxFB
43 ubicc2 A*B*ABBAB
44 21 22 23 43 syl3anc φBAB
45 42 35 44 rspcdva φFB
46 45 3 ltnegd φFB<UU<FB
47 40 46 mpbid φU<FB
48 5 44 sseldd φBD
49 fveq2 y=BFy=FB
50 49 negeqd y=BFy=FB
51 negex FBV
52 50 10 51 fvmpt BDyDFyB=FB
53 48 52 syl φyDFyB=FB
54 47 53 breqtrrd φU<yDFyB
55 39 54 jca φyDFyA<UU<yDFyB
56 1 2 9 4 5 12 20 55 ivth φcAByDFyc=U
57 ioossicc ABAB
58 57 5 sstrid φABD
59 58 sselda φcABcD
60 fveq2 y=cFy=Fc
61 60 negeqd y=cFy=Fc
62 negex FcV
63 61 10 62 fvmpt cDyDFyc=Fc
64 59 63 syl φcAByDFyc=Fc
65 64 eqeq1d φcAByDFyc=UFc=U
66 cncff F:DcnF:D
67 6 66 syl φF:D
68 67 ffvelcdmda φcDFc
69 59 68 syldan φcABFc
70 3 recnd φU
71 70 adantr φcABU
72 69 71 neg11ad φcABFc=UFc=U
73 65 72 bitrd φcAByDFyc=UFc=U
74 73 rexbidva φcAByDFyc=UcABFc=U
75 56 74 mpbid φcABFc=U