Metamath Proof Explorer


Theorem jm3.1lem2

Description: Lemma for jm3.1 . (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Hypotheses jm3.1.a φ A 2
jm3.1.b φ K 2
jm3.1.c φ N
jm3.1.d φ K Y rm N + 1 A
Assertion jm3.1lem2 φ K N < 2 A K - K 2 - 1

Proof

Step Hyp Ref Expression
1 jm3.1.a φ A 2
2 jm3.1.b φ K 2
3 jm3.1.c φ N
4 jm3.1.d φ K Y rm N + 1 A
5 eluzelre K 2 K
6 2 5 syl φ K
7 3 nnnn0d φ N 0
8 6 7 reexpcld φ K N
9 eluzelre A 2 A
10 1 9 syl φ A
11 2re 2
12 remulcl 2 A 2 A
13 11 10 12 sylancr φ 2 A
14 13 6 remulcld φ 2 A K
15 6 resqcld φ K 2
16 14 15 resubcld φ 2 A K K 2
17 1re 1
18 resubcl 2 A K K 2 1 2 A K - K 2 - 1
19 16 17 18 sylancl φ 2 A K - K 2 - 1
20 1 2 3 4 jm3.1lem1 φ K N < A
21 10 6 remulcld φ A K
22 resubcl K 1 K 1
23 6 17 22 sylancl φ K 1
24 21 23 readdcld φ A K + K - 1
25 eluz2b1 K 2 K 1 < K
26 25 simprbi K 2 1 < K
27 2 26 syl φ 1 < K
28 eluz2nn A 2 A
29 1 28 syl φ A
30 29 nngt0d φ 0 < A
31 ltmulgt11 A K 0 < A 1 < K A < A K
32 10 6 30 31 syl3anc φ 1 < K A < A K
33 27 32 mpbid φ A < A K
34 uz2m1nn K 2 K 1
35 2 34 syl φ K 1
36 35 nnrpd φ K 1 +
37 21 36 ltaddrpd φ A K < A K + K - 1
38 10 21 24 33 37 lttrd φ A < A K + K - 1
39 peano2re K K + 1
40 6 39 syl φ K + 1
41 40 6 remulcld φ K + 1 K
42 resubcl A K 1 A K 1
43 21 17 42 sylancl φ A K 1
44 43 15 resubcld φ A K - 1 - K 2
45 6 recnd φ K
46 45 exp1d φ K 1 = K
47 eluz2nn K 2 K
48 2 47 syl φ K
49 48 nnge1d φ 1 K
50 nnuz = 1
51 3 50 eleqtrdi φ N 1
52 6 49 51 leexp2ad φ K 1 K N
53 46 52 eqbrtrrd φ K K N
54 6 8 10 53 20 lelttrd φ K < A
55 eluzelz K 2 K
56 2 55 syl φ K
57 eluzelz A 2 A
58 1 57 syl φ A
59 zltp1le K A K < A K + 1 A
60 56 58 59 syl2anc φ K < A K + 1 A
61 54 60 mpbid φ K + 1 A
62 48 nngt0d φ 0 < K
63 lemul1 K + 1 A K 0 < K K + 1 A K + 1 K A K
64 40 10 6 62 63 syl112anc φ K + 1 A K + 1 K A K
65 61 64 mpbid φ K + 1 K A K
66 41 21 44 65 leadd1dd φ K + 1 K + A K 1 - K 2 A K + A K 1 - K 2
67 21 recnd φ A K
68 41 15 resubcld φ K + 1 K K 2
69 68 recnd φ K + 1 K K 2
70 1cnd φ 1
71 67 69 70 addsub12d φ A K + K + 1 K K 2 - 1 = K + 1 K K 2 + A K - 1
72 45 70 45 adddird φ K + 1 K = K K + 1 K
73 45 sqvald φ K 2 = K K
74 72 73 oveq12d φ K + 1 K K 2 = K K + 1 K - K K
75 45 45 mulcld φ K K
76 ax-1cn 1
77 mulcl 1 K 1 K
78 76 45 77 sylancr φ 1 K
79 75 78 pncan2d φ K K + 1 K - K K = 1 K
80 45 mulid2d φ 1 K = K
81 74 79 80 3eqtrd φ K + 1 K K 2 = K
82 81 oveq1d φ K + 1 K - K 2 - 1 = K 1
83 82 oveq2d φ A K + K + 1 K K 2 - 1 = A K + K - 1
84 41 recnd φ K + 1 K
85 15 recnd φ K 2
86 43 recnd φ A K 1
87 84 85 86 subadd23d φ K + 1 K K 2 + A K - 1 = K + 1 K + A K 1 - K 2
88 71 83 87 3eqtr3d φ A K + K - 1 = K + 1 K + A K 1 - K 2
89 2cnd φ 2
90 10 recnd φ A
91 89 90 45 mulassd φ 2 A K = 2 A K
92 67 2timesd φ 2 A K = A K + A K
93 91 92 eqtrd φ 2 A K = A K + A K
94 93 oveq1d φ 2 A K K 2 = A K + A K - K 2
95 94 oveq1d φ 2 A K - K 2 - 1 = A K + A K - K 2 - 1
96 21 21 readdcld φ A K + A K
97 96 recnd φ A K + A K
98 97 85 70 sub32d φ A K + A K - K 2 - 1 = A K + A K - 1 - K 2
99 67 67 70 addsubassd φ A K + A K - 1 = A K + A K - 1
100 99 oveq1d φ A K + A K - 1 - K 2 = A K + A K 1 - K 2
101 67 86 85 addsubassd φ A K + A K 1 - K 2 = A K + A K 1 - K 2
102 100 101 eqtrd φ A K + A K - 1 - K 2 = A K + A K 1 - K 2
103 95 98 102 3eqtrd φ 2 A K - K 2 - 1 = A K + A K 1 - K 2
104 66 88 103 3brtr4d φ A K + K - 1 2 A K - K 2 - 1
105 10 24 19 38 104 ltletrd φ A < 2 A K - K 2 - 1
106 8 10 19 20 105 lttrd φ K N < 2 A K - K 2 - 1