Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
X and Y sequences 5: Diophantine representability of X, ^, _C
jm3.1lem2
Next ⟩
jm3.1lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
jm3.1lem2
Description:
Lemma for
jm3.1
.
(Contributed by
Stefan O'Rear
, 16-Oct-2014)
Ref
Expression
Hypotheses
jm3.1.a
⊢
φ
→
A
∈
ℤ
≥
2
jm3.1.b
⊢
φ
→
K
∈
ℤ
≥
2
jm3.1.c
⊢
φ
→
N
∈
ℕ
jm3.1.d
⊢
φ
→
K
Y
rm
N
+
1
≤
A
Assertion
jm3.1lem2
⊢
φ
→
K
N
<
2
A
K
-
K
2
-
1
Proof
Step
Hyp
Ref
Expression
1
jm3.1.a
⊢
φ
→
A
∈
ℤ
≥
2
2
jm3.1.b
⊢
φ
→
K
∈
ℤ
≥
2
3
jm3.1.c
⊢
φ
→
N
∈
ℕ
4
jm3.1.d
⊢
φ
→
K
Y
rm
N
+
1
≤
A
5
eluzelre
⊢
K
∈
ℤ
≥
2
→
K
∈
ℝ
6
2
5
syl
⊢
φ
→
K
∈
ℝ
7
3
nnnn0d
⊢
φ
→
N
∈
ℕ
0
8
6
7
reexpcld
⊢
φ
→
K
N
∈
ℝ
9
eluzelre
⊢
A
∈
ℤ
≥
2
→
A
∈
ℝ
10
1
9
syl
⊢
φ
→
A
∈
ℝ
11
2re
⊢
2
∈
ℝ
12
remulcl
⊢
2
∈
ℝ
∧
A
∈
ℝ
→
2
A
∈
ℝ
13
11
10
12
sylancr
⊢
φ
→
2
A
∈
ℝ
14
13
6
remulcld
⊢
φ
→
2
A
K
∈
ℝ
15
6
resqcld
⊢
φ
→
K
2
∈
ℝ
16
14
15
resubcld
⊢
φ
→
2
A
K
−
K
2
∈
ℝ
17
1re
⊢
1
∈
ℝ
18
resubcl
⊢
2
A
K
−
K
2
∈
ℝ
∧
1
∈
ℝ
→
2
A
K
-
K
2
-
1
∈
ℝ
19
16
17
18
sylancl
⊢
φ
→
2
A
K
-
K
2
-
1
∈
ℝ
20
1
2
3
4
jm3.1lem1
⊢
φ
→
K
N
<
A
21
10
6
remulcld
⊢
φ
→
A
K
∈
ℝ
22
resubcl
⊢
K
∈
ℝ
∧
1
∈
ℝ
→
K
−
1
∈
ℝ
23
6
17
22
sylancl
⊢
φ
→
K
−
1
∈
ℝ
24
21
23
readdcld
⊢
φ
→
A
K
+
K
-
1
∈
ℝ
25
eluz2b1
⊢
K
∈
ℤ
≥
2
↔
K
∈
ℤ
∧
1
<
K
26
25
simprbi
⊢
K
∈
ℤ
≥
2
→
1
<
K
27
2
26
syl
⊢
φ
→
1
<
K
28
eluz2nn
⊢
A
∈
ℤ
≥
2
→
A
∈
ℕ
29
1
28
syl
⊢
φ
→
A
∈
ℕ
30
29
nngt0d
⊢
φ
→
0
<
A
31
ltmulgt11
⊢
A
∈
ℝ
∧
K
∈
ℝ
∧
0
<
A
→
1
<
K
↔
A
<
A
K
32
10
6
30
31
syl3anc
⊢
φ
→
1
<
K
↔
A
<
A
K
33
27
32
mpbid
⊢
φ
→
A
<
A
K
34
uz2m1nn
⊢
K
∈
ℤ
≥
2
→
K
−
1
∈
ℕ
35
2
34
syl
⊢
φ
→
K
−
1
∈
ℕ
36
35
nnrpd
⊢
φ
→
K
−
1
∈
ℝ
+
37
21
36
ltaddrpd
⊢
φ
→
A
K
<
A
K
+
K
-
1
38
10
21
24
33
37
lttrd
⊢
φ
→
A
<
A
K
+
K
-
1
39
peano2re
⊢
K
∈
ℝ
→
K
+
1
∈
ℝ
40
6
39
syl
⊢
φ
→
K
+
1
∈
ℝ
41
40
6
remulcld
⊢
φ
→
K
+
1
K
∈
ℝ
42
resubcl
⊢
A
K
∈
ℝ
∧
1
∈
ℝ
→
A
K
−
1
∈
ℝ
43
21
17
42
sylancl
⊢
φ
→
A
K
−
1
∈
ℝ
44
43
15
resubcld
⊢
φ
→
A
K
-
1
-
K
2
∈
ℝ
45
6
recnd
⊢
φ
→
K
∈
ℂ
46
45
exp1d
⊢
φ
→
K
1
=
K
47
eluz2nn
⊢
K
∈
ℤ
≥
2
→
K
∈
ℕ
48
2
47
syl
⊢
φ
→
K
∈
ℕ
49
48
nnge1d
⊢
φ
→
1
≤
K
50
nnuz
⊢
ℕ
=
ℤ
≥
1
51
3
50
eleqtrdi
⊢
φ
→
N
∈
ℤ
≥
1
52
6
49
51
leexp2ad
⊢
φ
→
K
1
≤
K
N
53
46
52
eqbrtrrd
⊢
φ
→
K
≤
K
N
54
6
8
10
53
20
lelttrd
⊢
φ
→
K
<
A
55
eluzelz
⊢
K
∈
ℤ
≥
2
→
K
∈
ℤ
56
2
55
syl
⊢
φ
→
K
∈
ℤ
57
eluzelz
⊢
A
∈
ℤ
≥
2
→
A
∈
ℤ
58
1
57
syl
⊢
φ
→
A
∈
ℤ
59
zltp1le
⊢
K
∈
ℤ
∧
A
∈
ℤ
→
K
<
A
↔
K
+
1
≤
A
60
56
58
59
syl2anc
⊢
φ
→
K
<
A
↔
K
+
1
≤
A
61
54
60
mpbid
⊢
φ
→
K
+
1
≤
A
62
48
nngt0d
⊢
φ
→
0
<
K
63
lemul1
⊢
K
+
1
∈
ℝ
∧
A
∈
ℝ
∧
K
∈
ℝ
∧
0
<
K
→
K
+
1
≤
A
↔
K
+
1
K
≤
A
K
64
40
10
6
62
63
syl112anc
⊢
φ
→
K
+
1
≤
A
↔
K
+
1
K
≤
A
K
65
61
64
mpbid
⊢
φ
→
K
+
1
K
≤
A
K
66
41
21
44
65
leadd1dd
⊢
φ
→
K
+
1
K
+
A
K
−
1
-
K
2
≤
A
K
+
A
K
−
1
-
K
2
67
21
recnd
⊢
φ
→
A
K
∈
ℂ
68
41
15
resubcld
⊢
φ
→
K
+
1
K
−
K
2
∈
ℝ
69
68
recnd
⊢
φ
→
K
+
1
K
−
K
2
∈
ℂ
70
1cnd
⊢
φ
→
1
∈
ℂ
71
67
69
70
addsub12d
⊢
φ
→
A
K
+
K
+
1
K
−
K
2
-
1
=
K
+
1
K
−
K
2
+
A
K
-
1
72
45
70
45
adddird
⊢
φ
→
K
+
1
K
=
K
K
+
1
K
73
45
sqvald
⊢
φ
→
K
2
=
K
K
74
72
73
oveq12d
⊢
φ
→
K
+
1
K
−
K
2
=
K
K
+
1
K
-
K
K
75
45
45
mulcld
⊢
φ
→
K
K
∈
ℂ
76
ax-1cn
⊢
1
∈
ℂ
77
mulcl
⊢
1
∈
ℂ
∧
K
∈
ℂ
→
1
K
∈
ℂ
78
76
45
77
sylancr
⊢
φ
→
1
K
∈
ℂ
79
75
78
pncan2d
⊢
φ
→
K
K
+
1
K
-
K
K
=
1
K
80
45
mullidd
⊢
φ
→
1
K
=
K
81
74
79
80
3eqtrd
⊢
φ
→
K
+
1
K
−
K
2
=
K
82
81
oveq1d
⊢
φ
→
K
+
1
K
-
K
2
-
1
=
K
−
1
83
82
oveq2d
⊢
φ
→
A
K
+
K
+
1
K
−
K
2
-
1
=
A
K
+
K
-
1
84
41
recnd
⊢
φ
→
K
+
1
K
∈
ℂ
85
15
recnd
⊢
φ
→
K
2
∈
ℂ
86
43
recnd
⊢
φ
→
A
K
−
1
∈
ℂ
87
84
85
86
subadd23d
⊢
φ
→
K
+
1
K
−
K
2
+
A
K
-
1
=
K
+
1
K
+
A
K
−
1
-
K
2
88
71
83
87
3eqtr3d
⊢
φ
→
A
K
+
K
-
1
=
K
+
1
K
+
A
K
−
1
-
K
2
89
2cnd
⊢
φ
→
2
∈
ℂ
90
10
recnd
⊢
φ
→
A
∈
ℂ
91
89
90
45
mulassd
⊢
φ
→
2
A
K
=
2
A
K
92
67
2timesd
⊢
φ
→
2
A
K
=
A
K
+
A
K
93
91
92
eqtrd
⊢
φ
→
2
A
K
=
A
K
+
A
K
94
93
oveq1d
⊢
φ
→
2
A
K
−
K
2
=
A
K
+
A
K
-
K
2
95
94
oveq1d
⊢
φ
→
2
A
K
-
K
2
-
1
=
A
K
+
A
K
-
K
2
-
1
96
21
21
readdcld
⊢
φ
→
A
K
+
A
K
∈
ℝ
97
96
recnd
⊢
φ
→
A
K
+
A
K
∈
ℂ
98
97
85
70
sub32d
⊢
φ
→
A
K
+
A
K
-
K
2
-
1
=
A
K
+
A
K
-
1
-
K
2
99
67
67
70
addsubassd
⊢
φ
→
A
K
+
A
K
-
1
=
A
K
+
A
K
-
1
100
99
oveq1d
⊢
φ
→
A
K
+
A
K
-
1
-
K
2
=
A
K
+
A
K
−
1
-
K
2
101
67
86
85
addsubassd
⊢
φ
→
A
K
+
A
K
−
1
-
K
2
=
A
K
+
A
K
−
1
-
K
2
102
100
101
eqtrd
⊢
φ
→
A
K
+
A
K
-
1
-
K
2
=
A
K
+
A
K
−
1
-
K
2
103
95
98
102
3eqtrd
⊢
φ
→
2
A
K
-
K
2
-
1
=
A
K
+
A
K
−
1
-
K
2
104
66
88
103
3brtr4d
⊢
φ
→
A
K
+
K
-
1
≤
2
A
K
-
K
2
-
1
105
10
24
19
38
104
ltletrd
⊢
φ
→
A
<
2
A
K
-
K
2
-
1
106
8
10
19
20
105
lttrd
⊢
φ
→
K
N
<
2
A
K
-
K
2
-
1