Metamath Proof Explorer


Theorem jm3.1lem2

Description: Lemma for jm3.1 . (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Hypotheses jm3.1.a φA2
jm3.1.b φK2
jm3.1.c φN
jm3.1.d φKYrmN+1A
Assertion jm3.1lem2 φKN<2AK-K2-1

Proof

Step Hyp Ref Expression
1 jm3.1.a φA2
2 jm3.1.b φK2
3 jm3.1.c φN
4 jm3.1.d φKYrmN+1A
5 eluzelre K2K
6 2 5 syl φK
7 3 nnnn0d φN0
8 6 7 reexpcld φKN
9 eluzelre A2A
10 1 9 syl φA
11 2re 2
12 remulcl 2A2A
13 11 10 12 sylancr φ2A
14 13 6 remulcld φ2AK
15 6 resqcld φK2
16 14 15 resubcld φ2AKK2
17 1re 1
18 resubcl 2AKK212AK-K2-1
19 16 17 18 sylancl φ2AK-K2-1
20 1 2 3 4 jm3.1lem1 φKN<A
21 10 6 remulcld φAK
22 resubcl K1K1
23 6 17 22 sylancl φK1
24 21 23 readdcld φAK+K-1
25 eluz2b1 K2K1<K
26 25 simprbi K21<K
27 2 26 syl φ1<K
28 eluz2nn A2A
29 1 28 syl φA
30 29 nngt0d φ0<A
31 ltmulgt11 AK0<A1<KA<AK
32 10 6 30 31 syl3anc φ1<KA<AK
33 27 32 mpbid φA<AK
34 uz2m1nn K2K1
35 2 34 syl φK1
36 35 nnrpd φK1+
37 21 36 ltaddrpd φAK<AK+K-1
38 10 21 24 33 37 lttrd φA<AK+K-1
39 peano2re KK+1
40 6 39 syl φK+1
41 40 6 remulcld φK+1K
42 resubcl AK1AK1
43 21 17 42 sylancl φAK1
44 43 15 resubcld φAK-1-K2
45 6 recnd φK
46 45 exp1d φK1=K
47 eluz2nn K2K
48 2 47 syl φK
49 48 nnge1d φ1K
50 nnuz =1
51 3 50 eleqtrdi φN1
52 6 49 51 leexp2ad φK1KN
53 46 52 eqbrtrrd φKKN
54 6 8 10 53 20 lelttrd φK<A
55 eluzelz K2K
56 2 55 syl φK
57 eluzelz A2A
58 1 57 syl φA
59 zltp1le KAK<AK+1A
60 56 58 59 syl2anc φK<AK+1A
61 54 60 mpbid φK+1A
62 48 nngt0d φ0<K
63 lemul1 K+1AK0<KK+1AK+1KAK
64 40 10 6 62 63 syl112anc φK+1AK+1KAK
65 61 64 mpbid φK+1KAK
66 41 21 44 65 leadd1dd φK+1K+AK1-K2AK+AK1-K2
67 21 recnd φAK
68 41 15 resubcld φK+1KK2
69 68 recnd φK+1KK2
70 1cnd φ1
71 67 69 70 addsub12d φAK+K+1KK2-1=K+1KK2+AK-1
72 45 70 45 adddird φK+1K=KK+1K
73 45 sqvald φK2=KK
74 72 73 oveq12d φK+1KK2=KK+1K-KK
75 45 45 mulcld φKK
76 ax-1cn 1
77 mulcl 1K1K
78 76 45 77 sylancr φ1K
79 75 78 pncan2d φKK+1K-KK=1K
80 45 mullidd φ1K=K
81 74 79 80 3eqtrd φK+1KK2=K
82 81 oveq1d φK+1K-K2-1=K1
83 82 oveq2d φAK+K+1KK2-1=AK+K-1
84 41 recnd φK+1K
85 15 recnd φK2
86 43 recnd φAK1
87 84 85 86 subadd23d φK+1KK2+AK-1=K+1K+AK1-K2
88 71 83 87 3eqtr3d φAK+K-1=K+1K+AK1-K2
89 2cnd φ2
90 10 recnd φA
91 89 90 45 mulassd φ2AK=2AK
92 67 2timesd φ2AK=AK+AK
93 91 92 eqtrd φ2AK=AK+AK
94 93 oveq1d φ2AKK2=AK+AK-K2
95 94 oveq1d φ2AK-K2-1=AK+AK-K2-1
96 21 21 readdcld φAK+AK
97 96 recnd φAK+AK
98 97 85 70 sub32d φAK+AK-K2-1=AK+AK-1-K2
99 67 67 70 addsubassd φAK+AK-1=AK+AK-1
100 99 oveq1d φAK+AK-1-K2=AK+AK1-K2
101 67 86 85 addsubassd φAK+AK1-K2=AK+AK1-K2
102 100 101 eqtrd φAK+AK-1-K2=AK+AK1-K2
103 95 98 102 3eqtrd φ2AK-K2-1=AK+AK1-K2
104 66 88 103 3brtr4d φAK+K-12AK-K2-1
105 10 24 19 38 104 ltletrd φA<2AK-K2-1
106 8 10 19 20 105 lttrd φKN<2AK-K2-1