| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
cnf |
|
| 4 |
3
|
adantl |
|
| 5 |
|
cnvimass |
|
| 6 |
4
|
fdmd |
|
| 7 |
6
|
adantr |
|
| 8 |
5 7
|
sseqtrid |
|
| 9 |
|
cnvresima |
|
| 10 |
4
|
ad2antrr |
|
| 11 |
|
ffun |
|
| 12 |
|
inpreima |
|
| 13 |
10 11 12
|
3syl |
|
| 14 |
13
|
ineq1d |
|
| 15 |
|
in32 |
|
| 16 |
|
ssrin |
|
| 17 |
5 16
|
ax-mp |
|
| 18 |
|
dminss |
|
| 19 |
17 18
|
sstri |
|
| 20 |
19
|
a1i |
|
| 21 |
|
dfss2 |
|
| 22 |
20 21
|
sylib |
|
| 23 |
15 22
|
eqtrid |
|
| 24 |
14 23
|
eqtrd |
|
| 25 |
9 24
|
eqtrid |
|
| 26 |
|
simpr |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
|
elpwi |
|
| 29 |
28
|
ad2antrl |
|
| 30 |
1
|
cnrest |
|
| 31 |
27 29 30
|
syl2anc |
|
| 32 |
|
simpr |
|
| 33 |
32
|
ad3antrrr |
|
| 34 |
|
toptopon2 |
|
| 35 |
33 34
|
sylib |
|
| 36 |
|
df-ima |
|
| 37 |
36
|
eqimss2i |
|
| 38 |
37
|
a1i |
|
| 39 |
|
imassrn |
|
| 40 |
10
|
frnd |
|
| 41 |
39 40
|
sstrid |
|
| 42 |
|
cnrest2 |
|
| 43 |
35 38 41 42
|
syl3anc |
|
| 44 |
31 43
|
mpbid |
|
| 45 |
|
simplr |
|
| 46 |
|
simprr |
|
| 47 |
|
imacmp |
|
| 48 |
27 46 47
|
syl2anc |
|
| 49 |
|
kgeni |
|
| 50 |
45 48 49
|
syl2anc |
|
| 51 |
|
cnima |
|
| 52 |
44 50 51
|
syl2anc |
|
| 53 |
25 52
|
eqeltrrd |
|
| 54 |
53
|
expr |
|
| 55 |
54
|
ralrimiva |
|
| 56 |
|
kgentop |
|
| 57 |
56
|
ad3antrrr |
|
| 58 |
|
toptopon2 |
|
| 59 |
57 58
|
sylib |
|
| 60 |
|
elkgen |
|
| 61 |
59 60
|
syl |
|
| 62 |
8 55 61
|
mpbir2and |
|
| 63 |
|
kgenidm |
|
| 64 |
63
|
ad3antrrr |
|
| 65 |
62 64
|
eleqtrd |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
56 58
|
sylib |
|
| 68 |
|
kgentopon |
|
| 69 |
34 68
|
sylbi |
|
| 70 |
|
iscn |
|
| 71 |
67 69 70
|
syl2an |
|
| 72 |
71
|
adantr |
|
| 73 |
4 66 72
|
mpbir2and |
|
| 74 |
73
|
ex |
|
| 75 |
74
|
ssrdv |
|
| 76 |
69
|
adantl |
|
| 77 |
|
toponcom |
|
| 78 |
32 76 77
|
syl2anc |
|
| 79 |
|
kgenss |
|
| 80 |
79
|
adantl |
|
| 81 |
|
eqid |
|
| 82 |
81
|
cnss2 |
|
| 83 |
78 80 82
|
syl2anc |
|
| 84 |
75 83
|
eqssd |
|