Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppcnlem4.t | |
|
knoppcnlem4.f | |
||
knoppcnlem4.n | |
||
knoppcnlem4.1 | |
||
knoppcnlem4.2 | |
||
knoppcnlem4.3 | |
||
Assertion | knoppcnlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem4.t | |
|
2 | knoppcnlem4.f | |
|
3 | knoppcnlem4.n | |
|
4 | knoppcnlem4.1 | |
|
5 | knoppcnlem4.2 | |
|
6 | knoppcnlem4.3 | |
|
7 | 2 5 6 | knoppcnlem1 | |
8 | 7 | fveq2d | |
9 | 4 | recnd | |
10 | 9 6 | expcld | |
11 | 2re | |
|
12 | 11 | a1i | |
13 | nnre | |
|
14 | 3 13 | syl | |
15 | 12 14 | remulcld | |
16 | 15 6 | reexpcld | |
17 | 16 5 | remulcld | |
18 | 1 17 | dnicld2 | |
19 | 18 | recnd | |
20 | 10 19 | absmuld | |
21 | 9 6 | absexpd | |
22 | 21 | oveq1d | |
23 | 20 22 | eqtrd | |
24 | 19 | abscld | |
25 | 1red | |
|
26 | 9 | abscld | |
27 | 26 6 | reexpcld | |
28 | 9 | absge0d | |
29 | 26 6 28 | expge0d | |
30 | 1 | dnival | |
31 | 17 30 | syl | |
32 | 31 | fveq2d | |
33 | halfre | |
|
34 | 33 | a1i | |
35 | 17 34 | readdcld | |
36 | reflcl | |
|
37 | 35 36 | syl | |
38 | 37 17 | resubcld | |
39 | 38 | recnd | |
40 | absidm | |
|
41 | 39 40 | syl | |
42 | 32 41 | eqtrd | |
43 | 31 18 | eqeltrrd | |
44 | rddif | |
|
45 | 17 44 | syl | |
46 | halflt1 | |
|
47 | 1re | |
|
48 | 33 47 | ltlei | |
49 | 46 48 | ax-mp | |
50 | 49 | a1i | |
51 | 43 34 25 45 50 | letrd | |
52 | 42 51 | eqbrtrd | |
53 | 24 25 27 29 52 | lemul2ad | |
54 | ax-1rid | |
|
55 | 27 54 | syl | |
56 | 53 55 | breqtrd | |
57 | 23 56 | eqbrtrd | |
58 | eqidd | |
|
59 | oveq2 | |
|
60 | 59 | adantl | |
61 | 58 60 6 27 | fvmptd | |
62 | 61 | eqcomd | |
63 | 57 62 | breqtrd | |
64 | 8 63 | eqbrtrd | |