Metamath Proof Explorer


Theorem knoppcnlem4

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem4.t T=xx+12x
knoppcnlem4.f F=yn0CnT2 Nny
knoppcnlem4.n φN
knoppcnlem4.1 φC
knoppcnlem4.2 φA
knoppcnlem4.3 φM0
Assertion knoppcnlem4 φFAMm0CmM

Proof

Step Hyp Ref Expression
1 knoppcnlem4.t T=xx+12x
2 knoppcnlem4.f F=yn0CnT2 Nny
3 knoppcnlem4.n φN
4 knoppcnlem4.1 φC
5 knoppcnlem4.2 φA
6 knoppcnlem4.3 φM0
7 2 5 6 knoppcnlem1 φFAM=CMT2 NMA
8 7 fveq2d φFAM=CMT2 NMA
9 4 recnd φC
10 9 6 expcld φCM
11 2re 2
12 11 a1i φ2
13 nnre NN
14 3 13 syl φN
15 12 14 remulcld φ2 N
16 15 6 reexpcld φ2 NM
17 16 5 remulcld φ2 NMA
18 1 17 dnicld2 φT2 NMA
19 18 recnd φT2 NMA
20 10 19 absmuld φCMT2 NMA=CMT2 NMA
21 9 6 absexpd φCM=CM
22 21 oveq1d φCMT2 NMA=CMT2 NMA
23 20 22 eqtrd φCMT2 NMA=CMT2 NMA
24 19 abscld φT2 NMA
25 1red φ1
26 9 abscld φC
27 26 6 reexpcld φCM
28 9 absge0d φ0C
29 26 6 28 expge0d φ0CM
30 1 dnival 2 NMAT2 NMA=2 NMA+122 NMA
31 17 30 syl φT2 NMA=2 NMA+122 NMA
32 31 fveq2d φT2 NMA=2 NMA+122 NMA
33 halfre 12
34 33 a1i φ12
35 17 34 readdcld φ2 NMA+12
36 reflcl 2 NMA+122 NMA+12
37 35 36 syl φ2 NMA+12
38 37 17 resubcld φ2 NMA+122 NMA
39 38 recnd φ2 NMA+122 NMA
40 absidm 2 NMA+122 NMA2 NMA+122 NMA=2 NMA+122 NMA
41 39 40 syl φ2 NMA+122 NMA=2 NMA+122 NMA
42 32 41 eqtrd φT2 NMA=2 NMA+122 NMA
43 31 18 eqeltrrd φ2 NMA+122 NMA
44 rddif 2 NMA2 NMA+122 NMA12
45 17 44 syl φ2 NMA+122 NMA12
46 halflt1 12<1
47 1re 1
48 33 47 ltlei 12<1121
49 46 48 ax-mp 121
50 49 a1i φ121
51 43 34 25 45 50 letrd φ2 NMA+122 NMA1
52 42 51 eqbrtrd φT2 NMA1
53 24 25 27 29 52 lemul2ad φCMT2 NMACM1
54 ax-1rid CMCM1=CM
55 27 54 syl φCM1=CM
56 53 55 breqtrd φCMT2 NMACM
57 23 56 eqbrtrd φCMT2 NMACM
58 eqidd φm0Cm=m0Cm
59 oveq2 m=MCm=CM
60 59 adantl φm=MCm=CM
61 58 60 6 27 fvmptd φm0CmM=CM
62 61 eqcomd φCM=m0CmM
63 57 62 breqtrd φCMT2 NMAm0CmM
64 8 63 eqbrtrd φFAMm0CmM