Metamath Proof Explorer


Theorem knoppndvlem7

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem7.t T=xx+12x
knoppndvlem7.f F=yn0CnT2 Nny
knoppndvlem7.a A=2 NJ2 M
knoppndvlem7.j φJ0
knoppndvlem7.m φM
knoppndvlem7.n φN
Assertion knoppndvlem7 φFAJ=CJTM2

Proof

Step Hyp Ref Expression
1 knoppndvlem7.t T=xx+12x
2 knoppndvlem7.f F=yn0CnT2 Nny
3 knoppndvlem7.a A=2 NJ2 M
4 knoppndvlem7.j φJ0
5 knoppndvlem7.m φM
6 knoppndvlem7.n φN
7 3 a1i φA=2 NJ2 M
8 4 nn0zd φJ
9 6 8 5 knoppndvlem1 φ2 NJ2 M
10 7 9 eqeltrd φA
11 2 10 4 knoppcnlem1 φFAJ=CJT2 NJA
12 3 oveq2i 2 NJA=2 NJ2 NJ2 M
13 12 a1i φ2 NJA=2 NJ2 NJ2 M
14 2cnd φ2
15 nnz NN
16 6 15 syl φN
17 16 zcnd φN
18 14 17 mulcld φ2 N
19 18 4 expcld φ2 NJ
20 2ne0 20
21 20 a1i φ20
22 0red φ0
23 1red φ1
24 16 zred φN
25 0lt1 0<1
26 25 a1i φ0<1
27 nnge1 N1N
28 6 27 syl φ1N
29 22 23 24 26 28 ltletrd φ0<N
30 22 29 ltned φ0N
31 30 necomd φN0
32 14 17 21 31 mulne0d φ2 N0
33 8 znegcld φJ
34 18 32 33 expclzd φ2 NJ
35 34 14 21 divcld φ2 NJ2
36 5 zcnd φM
37 19 35 36 mulassd φ2 NJ2 NJ2 M=2 NJ2 NJ2 M
38 37 eqcomd φ2 NJ2 NJ2 M=2 NJ2 NJ2 M
39 19 34 14 21 divassd φ2 NJ2 NJ2=2 NJ2 NJ2
40 39 eqcomd φ2 NJ2 NJ2=2 NJ2 NJ2
41 18 32 8 expnegd φ2 NJ=12 NJ
42 41 oveq2d φ2 NJ2 NJ=2 NJ12 NJ
43 18 32 8 expne0d φ2 NJ0
44 19 43 recidd φ2 NJ12 NJ=1
45 42 44 eqtrd φ2 NJ2 NJ=1
46 45 oveq1d φ2 NJ2 NJ2=12
47 40 46 eqtrd φ2 NJ2 NJ2=12
48 47 oveq1d φ2 NJ2 NJ2 M=12 M
49 36 14 21 divrec2d φM2=12 M
50 49 eqcomd φ12 M=M2
51 38 48 50 3eqtrd φ2 NJ2 NJ2 M=M2
52 13 51 eqtrd φ2 NJA=M2
53 52 fveq2d φT2 NJA=TM2
54 53 oveq2d φCJT2 NJA=CJTM2
55 11 54 eqtrd φFAJ=CJTM2