Metamath Proof Explorer


Theorem lcfl8b

Description: Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses lcfl8b.h H=LHypK
lcfl8b.o ˙=ocHKW
lcfl8b.u U=DVecHKW
lcfl8b.v V=BaseU
lcfl8b.n N=LSpanU
lcfl8b.z 0˙=0U
lcfl8b.f F=LFnlU
lcfl8b.l L=LKerU
lcfl8b.d D=LDualU
lcfl8b.y Y=0D
lcfl8b.c C=fF|˙˙Lf=Lf
lcfl8b.k φKHLWH
lcfl8b.g φGCY
Assertion lcfl8b φxV0˙˙LG=Nx

Proof

Step Hyp Ref Expression
1 lcfl8b.h H=LHypK
2 lcfl8b.o ˙=ocHKW
3 lcfl8b.u U=DVecHKW
4 lcfl8b.v V=BaseU
5 lcfl8b.n N=LSpanU
6 lcfl8b.z 0˙=0U
7 lcfl8b.f F=LFnlU
8 lcfl8b.l L=LKerU
9 lcfl8b.d D=LDualU
10 lcfl8b.y Y=0D
11 lcfl8b.c C=fF|˙˙Lf=Lf
12 lcfl8b.k φKHLWH
13 lcfl8b.g φGCY
14 13 eldifad φGC
15 11 lcfl1lem GCGF˙˙LG=LG
16 15 simplbi GCGF
17 14 16 syl φGF
18 1 2 3 4 7 8 11 12 17 lcfl8 φGCxVLG=˙x
19 14 18 mpbid φxVLG=˙x
20 fveq2 LG=˙x˙LG=˙˙x
21 20 adantl φxVLG=˙x˙LG=˙˙x
22 12 ad2antrr φxVLG=˙xKHLWH
23 simplr φxVLG=˙xxV
24 1 3 2 4 5 22 23 dochocsn φxVLG=˙x˙˙x=Nx
25 21 24 eqtrd φxVLG=˙x˙LG=Nx
26 14 15 sylib φGF˙˙LG=LG
27 26 simprd φ˙˙LG=LG
28 eldifsni GCYGY
29 13 28 syl φGY
30 1 3 12 dvhlmod φULMod
31 4 7 8 9 10 30 17 lkr0f2 φLG=VG=Y
32 31 necon3bid φLGVGY
33 29 32 mpbird φLGV
34 27 33 eqnetrd φ˙˙LGV
35 34 ad2antrr φxVLG=˙x˙˙LGV
36 eqid LSAtomsU=LSAtomsU
37 17 ad2antrr φxVLG=˙xGF
38 1 2 3 4 36 7 8 22 37 dochkrsat2 φxVLG=˙x˙˙LGV˙LGLSAtomsU
39 35 38 mpbid φxVLG=˙x˙LGLSAtomsU
40 25 39 eqeltrrd φxVLG=˙xNxLSAtomsU
41 30 ad2antrr φxVLG=˙xULMod
42 4 5 6 36 41 23 lsatspn0 φxVLG=˙xNxLSAtomsUx0˙
43 40 42 mpbid φxVLG=˙xx0˙
44 43 25 jca φxVLG=˙xx0˙˙LG=Nx
45 44 ex φxVLG=˙xx0˙˙LG=Nx
46 45 reximdva φxVLG=˙xxVx0˙˙LG=Nx
47 19 46 mpd φxVx0˙˙LG=Nx
48 rexdifsn xV0˙˙LG=NxxVx0˙˙LG=Nx
49 47 48 sylibr φxV0˙˙LG=Nx