Description: Lemma for lcfr . Closure of vector sum with colinear vectors. TODO: Move down N definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem6.h | |
|
lcfrlem6.o | |
||
lcfrlem6.u | |
||
lcfrlem6.p | |
||
lcfrlem6.n | |
||
lcfrlem6.l | |
||
lcfrlem6.d | |
||
lcfrlem6.q | |
||
lcfrlem6.k | |
||
lcfrlem6.g | |
||
lcfrlem6.e | |
||
lcfrlem6.x | |
||
lcfrlem6.y | |
||
lcfrlem6.en | |
||
Assertion | lcfrlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem6.h | |
|
2 | lcfrlem6.o | |
|
3 | lcfrlem6.u | |
|
4 | lcfrlem6.p | |
|
5 | lcfrlem6.n | |
|
6 | lcfrlem6.l | |
|
7 | lcfrlem6.d | |
|
8 | lcfrlem6.q | |
|
9 | lcfrlem6.k | |
|
10 | lcfrlem6.g | |
|
11 | lcfrlem6.e | |
|
12 | lcfrlem6.x | |
|
13 | lcfrlem6.y | |
|
14 | lcfrlem6.en | |
|
15 | 12 11 | eleqtrdi | |
16 | eliun | |
|
17 | 15 16 | sylib | |
18 | 1 3 9 | dvhlmod | |
19 | 18 | adantr | |
20 | 19 | adantr | |
21 | 9 | adantr | |
22 | eqid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | 24 8 | lssel | |
26 | 10 25 | sylan | |
27 | 23 7 24 18 | ldualvbase | |
28 | 27 | adantr | |
29 | 26 28 | eleqtrd | |
30 | 22 23 6 19 29 | lkrssv | |
31 | eqid | |
|
32 | 1 3 22 31 2 | dochlss | |
33 | 21 30 32 | syl2anc | |
34 | 33 | adantr | |
35 | simpr | |
|
36 | 14 | adantr | |
37 | 36 | adantr | |
38 | simpr | |
|
39 | 37 38 | eqsstrrd | |
40 | 39 | ex | |
41 | 1 2 3 22 6 7 8 11 9 10 12 | lcfrlem4 | |
42 | 41 | adantr | |
43 | 22 31 5 19 33 42 | lspsnel5 | |
44 | 1 2 3 22 6 7 8 11 9 10 13 | lcfrlem4 | |
45 | 44 | adantr | |
46 | 22 31 5 19 33 45 | lspsnel5 | |
47 | 40 43 46 | 3imtr4d | |
48 | 47 | imp | |
49 | 4 31 | lssvacl | |
50 | 20 34 35 48 49 | syl22anc | |
51 | 50 | ex | |
52 | 51 | reximdva | |
53 | 17 52 | mpd | |
54 | eliun | |
|
55 | 53 54 | sylibr | |
56 | 55 11 | eleqtrrdi | |