Metamath Proof Explorer


Theorem lcfrlem6

Description: Lemma for lcfr . Closure of vector sum with colinear vectors. TODO: Move down N definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem6.h H=LHypK
lcfrlem6.o ˙=ocHKW
lcfrlem6.u U=DVecHKW
lcfrlem6.p +˙=+U
lcfrlem6.n N=LSpanU
lcfrlem6.l L=LKerU
lcfrlem6.d D=LDualU
lcfrlem6.q Q=LSubSpD
lcfrlem6.k φKHLWH
lcfrlem6.g φGQ
lcfrlem6.e E=gG˙Lg
lcfrlem6.x φXE
lcfrlem6.y φYE
lcfrlem6.en φNX=NY
Assertion lcfrlem6 φX+˙YE

Proof

Step Hyp Ref Expression
1 lcfrlem6.h H=LHypK
2 lcfrlem6.o ˙=ocHKW
3 lcfrlem6.u U=DVecHKW
4 lcfrlem6.p +˙=+U
5 lcfrlem6.n N=LSpanU
6 lcfrlem6.l L=LKerU
7 lcfrlem6.d D=LDualU
8 lcfrlem6.q Q=LSubSpD
9 lcfrlem6.k φKHLWH
10 lcfrlem6.g φGQ
11 lcfrlem6.e E=gG˙Lg
12 lcfrlem6.x φXE
13 lcfrlem6.y φYE
14 lcfrlem6.en φNX=NY
15 12 11 eleqtrdi φXgG˙Lg
16 eliun XgG˙LggGX˙Lg
17 15 16 sylib φgGX˙Lg
18 1 3 9 dvhlmod φULMod
19 18 adantr φgGULMod
20 19 adantr φgGX˙LgULMod
21 9 adantr φgGKHLWH
22 eqid BaseU=BaseU
23 eqid LFnlU=LFnlU
24 eqid BaseD=BaseD
25 24 8 lssel GQgGgBaseD
26 10 25 sylan φgGgBaseD
27 23 7 24 18 ldualvbase φBaseD=LFnlU
28 27 adantr φgGBaseD=LFnlU
29 26 28 eleqtrd φgGgLFnlU
30 22 23 6 19 29 lkrssv φgGLgBaseU
31 eqid LSubSpU=LSubSpU
32 1 3 22 31 2 dochlss KHLWHLgBaseU˙LgLSubSpU
33 21 30 32 syl2anc φgG˙LgLSubSpU
34 33 adantr φgGX˙Lg˙LgLSubSpU
35 simpr φgGX˙LgX˙Lg
36 14 adantr φgGNX=NY
37 36 adantr φgGNX˙LgNX=NY
38 simpr φgGNX˙LgNX˙Lg
39 37 38 eqsstrrd φgGNX˙LgNY˙Lg
40 39 ex φgGNX˙LgNY˙Lg
41 1 2 3 22 6 7 8 11 9 10 12 lcfrlem4 φXBaseU
42 41 adantr φgGXBaseU
43 22 31 5 19 33 42 lspsnel5 φgGX˙LgNX˙Lg
44 1 2 3 22 6 7 8 11 9 10 13 lcfrlem4 φYBaseU
45 44 adantr φgGYBaseU
46 22 31 5 19 33 45 lspsnel5 φgGY˙LgNY˙Lg
47 40 43 46 3imtr4d φgGX˙LgY˙Lg
48 47 imp φgGX˙LgY˙Lg
49 4 31 lssvacl ULMod˙LgLSubSpUX˙LgY˙LgX+˙Y˙Lg
50 20 34 35 48 49 syl22anc φgGX˙LgX+˙Y˙Lg
51 50 ex φgGX˙LgX+˙Y˙Lg
52 51 reximdva φgGX˙LggGX+˙Y˙Lg
53 17 52 mpd φgGX+˙Y˙Lg
54 eliun X+˙YgG˙LggGX+˙Y˙Lg
55 53 54 sylibr φX+˙YgG˙Lg
56 55 11 eleqtrrdi φX+˙YE