Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Least common multiple inequality theorem
lcmineqlem23
Next ⟩
lcmineqlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcmineqlem23
Description:
Penultimate step to the lcm inequality lemma.
(Contributed by
metakunt
, 12-May-2024)
Ref
Expression
Hypotheses
lcmineqlem23.1
⊢
φ
→
N
∈
ℕ
lcmineqlem23.2
⊢
φ
→
9
≤
N
Assertion
lcmineqlem23
⊢
φ
→
2
N
≤
lcm
_
1
…
N
Proof
Step
Hyp
Ref
Expression
1
lcmineqlem23.1
⊢
φ
→
N
∈
ℕ
2
lcmineqlem23.2
⊢
φ
→
9
≤
N
3
2nn
⊢
2
∈
ℕ
4
3
a1i
⊢
φ
→
2
∈
ℕ
5
1
4
jca
⊢
φ
→
N
∈
ℕ
∧
2
∈
ℕ
6
nndivdvds
⊢
N
∈
ℕ
∧
2
∈
ℕ
→
2
∥
N
↔
N
2
∈
ℕ
7
5
6
syl
⊢
φ
→
2
∥
N
↔
N
2
∈
ℕ
8
7
biimpa
⊢
φ
∧
2
∥
N
→
N
2
∈
ℕ
9
8
nnzd
⊢
φ
∧
2
∥
N
→
N
2
∈
ℤ
10
1zzd
⊢
φ
∧
2
∥
N
→
1
∈
ℤ
11
9
10
zsubcld
⊢
φ
∧
2
∥
N
→
N
2
−
1
∈
ℤ
12
0red
⊢
φ
∧
2
∥
N
→
0
∈
ℝ
13
4re
⊢
4
∈
ℝ
14
13
a1i
⊢
φ
∧
2
∥
N
→
4
∈
ℝ
15
8
nnred
⊢
φ
∧
2
∥
N
→
N
2
∈
ℝ
16
1red
⊢
φ
∧
2
∥
N
→
1
∈
ℝ
17
15
16
resubcld
⊢
φ
∧
2
∥
N
→
N
2
−
1
∈
ℝ
18
4pos
⊢
0
<
4
19
18
a1i
⊢
φ
∧
2
∥
N
→
0
<
4
20
5m1e4
⊢
5
−
1
=
4
21
5re
⊢
5
∈
ℝ
22
21
a1i
⊢
φ
∧
2
∥
N
→
5
∈
ℝ
23
3
nncni
⊢
2
∈
ℂ
24
5cn
⊢
5
∈
ℂ
25
23
24
mulcomi
⊢
2
⋅
5
=
5
⋅
2
26
5t2e10
⊢
5
⋅
2
=
10
27
25
26
eqtri
⊢
2
⋅
5
=
10
28
10re
⊢
10
∈
ℝ
29
28
recni
⊢
10
∈
ℂ
30
3
nnne0i
⊢
2
≠
0
31
29
23
24
30
divmuli
⊢
10
2
=
5
↔
2
⋅
5
=
10
32
27
31
mpbir
⊢
10
2
=
5
33
28
a1i
⊢
φ
∧
2
∥
N
→
10
∈
ℝ
34
1
nnred
⊢
φ
→
N
∈
ℝ
35
34
adantr
⊢
φ
∧
2
∥
N
→
N
∈
ℝ
36
2rp
⊢
2
∈
ℝ
+
37
36
a1i
⊢
φ
∧
2
∥
N
→
2
∈
ℝ
+
38
9p1e10
⊢
9
+
1
=
10
39
9re
⊢
9
∈
ℝ
40
39
a1i
⊢
φ
→
9
∈
ℝ
41
40
34
leloed
⊢
φ
→
9
≤
N
↔
9
<
N
∨
9
=
N
42
2
41
mpbid
⊢
φ
→
9
<
N
∨
9
=
N
43
42
adantr
⊢
φ
∧
2
∥
N
→
9
<
N
∨
9
=
N
44
4cn
⊢
4
∈
ℂ
45
23
44
mulcomi
⊢
2
⋅
4
=
4
⋅
2
46
4t2e8
⊢
4
⋅
2
=
8
47
45
46
eqtri
⊢
2
⋅
4
=
8
48
8re
⊢
8
∈
ℝ
49
48
recni
⊢
8
∈
ℂ
50
49
23
44
30
divmuli
⊢
8
2
=
4
↔
2
⋅
4
=
8
51
47
50
mpbir
⊢
8
2
=
4
52
4nn
⊢
4
∈
ℕ
53
51
52
eqeltri
⊢
8
2
∈
ℕ
54
8nn
⊢
8
∈
ℕ
55
nndivdvds
⊢
8
∈
ℕ
∧
2
∈
ℕ
→
2
∥
8
↔
8
2
∈
ℕ
56
54
3
55
mp2an
⊢
2
∥
8
↔
8
2
∈
ℕ
57
53
56
mpbir
⊢
2
∥
8
58
9m1e8
⊢
9
−
1
=
8
59
57
58
breqtrri
⊢
2
∥
9
−
1
60
9nn
⊢
9
∈
ℕ
61
60
nnzi
⊢
9
∈
ℤ
62
oddm1even
⊢
9
∈
ℤ
→
¬
2
∥
9
↔
2
∥
9
−
1
63
61
62
ax-mp
⊢
¬
2
∥
9
↔
2
∥
9
−
1
64
59
63
mpbir
⊢
¬
2
∥
9
65
breq2
⊢
9
=
N
→
2
∥
9
↔
2
∥
N
66
64
65
mtbii
⊢
9
=
N
→
¬
2
∥
N
67
66
con2i
⊢
2
∥
N
→
¬
9
=
N
68
67
adantl
⊢
φ
∧
2
∥
N
→
¬
9
=
N
69
43
68
olcnd
⊢
φ
∧
2
∥
N
→
9
<
N
70
1
nnzd
⊢
φ
→
N
∈
ℤ
71
zltp1le
⊢
9
∈
ℤ
∧
N
∈
ℤ
→
9
<
N
↔
9
+
1
≤
N
72
61
71
mpan
⊢
N
∈
ℤ
→
9
<
N
↔
9
+
1
≤
N
73
70
72
syl
⊢
φ
→
9
<
N
↔
9
+
1
≤
N
74
73
adantr
⊢
φ
∧
2
∥
N
→
9
<
N
↔
9
+
1
≤
N
75
69
74
mpbid
⊢
φ
∧
2
∥
N
→
9
+
1
≤
N
76
38
75
eqbrtrrid
⊢
φ
∧
2
∥
N
→
10
≤
N
77
33
35
37
76
lediv1dd
⊢
φ
∧
2
∥
N
→
10
2
≤
N
2
78
32
77
eqbrtrrid
⊢
φ
∧
2
∥
N
→
5
≤
N
2
79
22
15
16
78
lesub1dd
⊢
φ
∧
2
∥
N
→
5
−
1
≤
N
2
−
1
80
20
79
eqbrtrrid
⊢
φ
∧
2
∥
N
→
4
≤
N
2
−
1
81
12
14
17
19
80
ltletrd
⊢
φ
∧
2
∥
N
→
0
<
N
2
−
1
82
11
81
jca
⊢
φ
∧
2
∥
N
→
N
2
−
1
∈
ℤ
∧
0
<
N
2
−
1
83
elnnz
⊢
N
2
−
1
∈
ℕ
↔
N
2
−
1
∈
ℤ
∧
0
<
N
2
−
1
84
82
83
sylibr
⊢
φ
∧
2
∥
N
→
N
2
−
1
∈
ℕ
85
84
80
lcmineqlem22
⊢
φ
∧
2
∥
N
→
2
2
N
2
−
1
+
1
≤
lcm
_
1
…
2
N
2
−
1
+
1
∧
2
2
N
2
−
1
+
2
≤
lcm
_
1
…
2
N
2
−
1
+
2
86
85
simprd
⊢
φ
∧
2
∥
N
→
2
2
N
2
−
1
+
2
≤
lcm
_
1
…
2
N
2
−
1
+
2
87
4
nncnd
⊢
φ
→
2
∈
ℂ
88
1
nncnd
⊢
φ
→
N
∈
ℂ
89
88
halfcld
⊢
φ
→
N
2
∈
ℂ
90
87
89
muls1d
⊢
φ
→
2
N
2
−
1
=
2
N
2
−
2
91
90
oveq1d
⊢
φ
→
2
N
2
−
1
+
2
=
2
N
2
-
2
+
2
92
87
89
mulcld
⊢
φ
→
2
N
2
∈
ℂ
93
92
87
npcand
⊢
φ
→
2
N
2
-
2
+
2
=
2
N
2
94
91
93
eqtrd
⊢
φ
→
2
N
2
−
1
+
2
=
2
N
2
95
4
nnne0d
⊢
φ
→
2
≠
0
96
88
87
95
divcan2d
⊢
φ
→
2
N
2
=
N
97
94
96
eqtrd
⊢
φ
→
2
N
2
−
1
+
2
=
N
98
97
oveq2d
⊢
φ
→
2
2
N
2
−
1
+
2
=
2
N
99
97
oveq2d
⊢
φ
→
1
…
2
N
2
−
1
+
2
=
1
…
N
100
99
fveq2d
⊢
φ
→
lcm
_
1
…
2
N
2
−
1
+
2
=
lcm
_
1
…
N
101
98
100
breq12d
⊢
φ
→
2
2
N
2
−
1
+
2
≤
lcm
_
1
…
2
N
2
−
1
+
2
↔
2
N
≤
lcm
_
1
…
N
102
101
adantr
⊢
φ
∧
2
∥
N
→
2
2
N
2
−
1
+
2
≤
lcm
_
1
…
2
N
2
−
1
+
2
↔
2
N
≤
lcm
_
1
…
N
103
86
102
mpbid
⊢
φ
∧
2
∥
N
→
2
N
≤
lcm
_
1
…
N
104
oddm1even
⊢
N
∈
ℤ
→
¬
2
∥
N
↔
2
∥
N
−
1
105
70
104
syl
⊢
φ
→
¬
2
∥
N
↔
2
∥
N
−
1
106
105
biimpa
⊢
φ
∧
¬
2
∥
N
→
2
∥
N
−
1
107
3
a1i
⊢
φ
∧
¬
2
∥
N
→
2
∈
ℕ
108
1zzd
⊢
φ
→
1
∈
ℤ
109
70
108
zsubcld
⊢
φ
→
N
−
1
∈
ℤ
110
0red
⊢
φ
→
0
∈
ℝ
111
48
a1i
⊢
φ
→
8
∈
ℝ
112
1red
⊢
φ
→
1
∈
ℝ
113
34
112
resubcld
⊢
φ
→
N
−
1
∈
ℝ
114
8pos
⊢
0
<
8
115
114
a1i
⊢
φ
→
0
<
8
116
40
34
112
2
lesub1dd
⊢
φ
→
9
−
1
≤
N
−
1
117
58
116
eqbrtrrid
⊢
φ
→
8
≤
N
−
1
118
110
111
113
115
117
ltletrd
⊢
φ
→
0
<
N
−
1
119
109
118
jca
⊢
φ
→
N
−
1
∈
ℤ
∧
0
<
N
−
1
120
elnnz
⊢
N
−
1
∈
ℕ
↔
N
−
1
∈
ℤ
∧
0
<
N
−
1
121
119
120
sylibr
⊢
φ
→
N
−
1
∈
ℕ
122
121
adantr
⊢
φ
∧
¬
2
∥
N
→
N
−
1
∈
ℕ
123
107
122
nndivdvdsd
⊢
φ
∧
¬
2
∥
N
→
2
∥
N
−
1
↔
N
−
1
2
∈
ℕ
124
106
123
mpbid
⊢
φ
∧
¬
2
∥
N
→
N
−
1
2
∈
ℕ
125
44
23
mulcomi
⊢
4
⋅
2
=
2
⋅
4
126
125
46
eqtr3i
⊢
2
⋅
4
=
8
127
126
50
mpbir
⊢
8
2
=
4
128
4
nnrpd
⊢
φ
→
2
∈
ℝ
+
129
111
113
128
117
lediv1dd
⊢
φ
→
8
2
≤
N
−
1
2
130
127
129
eqbrtrrid
⊢
φ
→
4
≤
N
−
1
2
131
130
adantr
⊢
φ
∧
¬
2
∥
N
→
4
≤
N
−
1
2
132
124
131
lcmineqlem22
⊢
φ
∧
¬
2
∥
N
→
2
2
N
−
1
2
+
1
≤
lcm
_
1
…
2
N
−
1
2
+
1
∧
2
2
N
−
1
2
+
2
≤
lcm
_
1
…
2
N
−
1
2
+
2
133
132
simpld
⊢
φ
∧
¬
2
∥
N
→
2
2
N
−
1
2
+
1
≤
lcm
_
1
…
2
N
−
1
2
+
1
134
1cnd
⊢
φ
→
1
∈
ℂ
135
88
134
subcld
⊢
φ
→
N
−
1
∈
ℂ
136
135
87
95
divcan2d
⊢
φ
→
2
N
−
1
2
=
N
−
1
137
136
oveq1d
⊢
φ
→
2
N
−
1
2
+
1
=
N
-
1
+
1
138
88
134
npcand
⊢
φ
→
N
-
1
+
1
=
N
139
137
138
eqtrd
⊢
φ
→
2
N
−
1
2
+
1
=
N
140
139
oveq2d
⊢
φ
→
2
2
N
−
1
2
+
1
=
2
N
141
139
oveq2d
⊢
φ
→
1
…
2
N
−
1
2
+
1
=
1
…
N
142
141
fveq2d
⊢
φ
→
lcm
_
1
…
2
N
−
1
2
+
1
=
lcm
_
1
…
N
143
140
142
breq12d
⊢
φ
→
2
2
N
−
1
2
+
1
≤
lcm
_
1
…
2
N
−
1
2
+
1
↔
2
N
≤
lcm
_
1
…
N
144
143
adantr
⊢
φ
∧
¬
2
∥
N
→
2
2
N
−
1
2
+
1
≤
lcm
_
1
…
2
N
−
1
2
+
1
↔
2
N
≤
lcm
_
1
…
N
145
133
144
mpbid
⊢
φ
∧
¬
2
∥
N
→
2
N
≤
lcm
_
1
…
N
146
103
145
pm2.61dan
⊢
φ
→
2
N
≤
lcm
_
1
…
N