Metamath Proof Explorer


Theorem lcmineqlem23

Description: Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem23.1 φ N
lcmineqlem23.2 φ 9 N
Assertion lcmineqlem23 φ 2 N lcm _ 1 N

Proof

Step Hyp Ref Expression
1 lcmineqlem23.1 φ N
2 lcmineqlem23.2 φ 9 N
3 2nn 2
4 3 a1i φ 2
5 1 4 jca φ N 2
6 nndivdvds N 2 2 N N 2
7 5 6 syl φ 2 N N 2
8 7 biimpa φ 2 N N 2
9 8 nnzd φ 2 N N 2
10 1zzd φ 2 N 1
11 9 10 zsubcld φ 2 N N 2 1
12 0red φ 2 N 0
13 4re 4
14 13 a1i φ 2 N 4
15 8 nnred φ 2 N N 2
16 1red φ 2 N 1
17 15 16 resubcld φ 2 N N 2 1
18 4pos 0 < 4
19 18 a1i φ 2 N 0 < 4
20 5m1e4 5 1 = 4
21 5re 5
22 21 a1i φ 2 N 5
23 3 nncni 2
24 5cn 5
25 23 24 mulcomi 2 5 = 5 2
26 5t2e10 5 2 = 10
27 25 26 eqtri 2 5 = 10
28 10re 10
29 28 recni 10
30 3 nnne0i 2 0
31 29 23 24 30 divmuli 10 2 = 5 2 5 = 10
32 27 31 mpbir 10 2 = 5
33 28 a1i φ 2 N 10
34 1 nnred φ N
35 34 adantr φ 2 N N
36 2rp 2 +
37 36 a1i φ 2 N 2 +
38 9p1e10 9 + 1 = 10
39 9re 9
40 39 a1i φ 9
41 40 34 leloed φ 9 N 9 < N 9 = N
42 2 41 mpbid φ 9 < N 9 = N
43 42 adantr φ 2 N 9 < N 9 = N
44 4cn 4
45 23 44 mulcomi 2 4 = 4 2
46 4t2e8 4 2 = 8
47 45 46 eqtri 2 4 = 8
48 8re 8
49 48 recni 8
50 49 23 44 30 divmuli 8 2 = 4 2 4 = 8
51 47 50 mpbir 8 2 = 4
52 4nn 4
53 51 52 eqeltri 8 2
54 8nn 8
55 nndivdvds 8 2 2 8 8 2
56 54 3 55 mp2an 2 8 8 2
57 53 56 mpbir 2 8
58 9m1e8 9 1 = 8
59 57 58 breqtrri 2 9 1
60 9nn 9
61 60 nnzi 9
62 oddm1even 9 ¬ 2 9 2 9 1
63 61 62 ax-mp ¬ 2 9 2 9 1
64 59 63 mpbir ¬ 2 9
65 breq2 9 = N 2 9 2 N
66 64 65 mtbii 9 = N ¬ 2 N
67 66 con2i 2 N ¬ 9 = N
68 67 adantl φ 2 N ¬ 9 = N
69 43 68 olcnd φ 2 N 9 < N
70 1 nnzd φ N
71 zltp1le 9 N 9 < N 9 + 1 N
72 61 71 mpan N 9 < N 9 + 1 N
73 70 72 syl φ 9 < N 9 + 1 N
74 73 adantr φ 2 N 9 < N 9 + 1 N
75 69 74 mpbid φ 2 N 9 + 1 N
76 38 75 eqbrtrrid φ 2 N 10 N
77 33 35 37 76 lediv1dd φ 2 N 10 2 N 2
78 32 77 eqbrtrrid φ 2 N 5 N 2
79 22 15 16 78 lesub1dd φ 2 N 5 1 N 2 1
80 20 79 eqbrtrrid φ 2 N 4 N 2 1
81 12 14 17 19 80 ltletrd φ 2 N 0 < N 2 1
82 11 81 jca φ 2 N N 2 1 0 < N 2 1
83 elnnz N 2 1 N 2 1 0 < N 2 1
84 82 83 sylibr φ 2 N N 2 1
85 84 80 lcmineqlem22 φ 2 N 2 2 N 2 1 + 1 lcm _ 1 2 N 2 1 + 1 2 2 N 2 1 + 2 lcm _ 1 2 N 2 1 + 2
86 85 simprd φ 2 N 2 2 N 2 1 + 2 lcm _ 1 2 N 2 1 + 2
87 4 nncnd φ 2
88 1 nncnd φ N
89 88 halfcld φ N 2
90 87 89 muls1d φ 2 N 2 1 = 2 N 2 2
91 90 oveq1d φ 2 N 2 1 + 2 = 2 N 2 - 2 + 2
92 87 89 mulcld φ 2 N 2
93 92 87 npcand φ 2 N 2 - 2 + 2 = 2 N 2
94 91 93 eqtrd φ 2 N 2 1 + 2 = 2 N 2
95 4 nnne0d φ 2 0
96 88 87 95 divcan2d φ 2 N 2 = N
97 94 96 eqtrd φ 2 N 2 1 + 2 = N
98 97 oveq2d φ 2 2 N 2 1 + 2 = 2 N
99 97 oveq2d φ 1 2 N 2 1 + 2 = 1 N
100 99 fveq2d φ lcm _ 1 2 N 2 1 + 2 = lcm _ 1 N
101 98 100 breq12d φ 2 2 N 2 1 + 2 lcm _ 1 2 N 2 1 + 2 2 N lcm _ 1 N
102 101 adantr φ 2 N 2 2 N 2 1 + 2 lcm _ 1 2 N 2 1 + 2 2 N lcm _ 1 N
103 86 102 mpbid φ 2 N 2 N lcm _ 1 N
104 oddm1even N ¬ 2 N 2 N 1
105 70 104 syl φ ¬ 2 N 2 N 1
106 105 biimpa φ ¬ 2 N 2 N 1
107 3 a1i φ ¬ 2 N 2
108 1zzd φ 1
109 70 108 zsubcld φ N 1
110 0red φ 0
111 48 a1i φ 8
112 1red φ 1
113 34 112 resubcld φ N 1
114 8pos 0 < 8
115 114 a1i φ 0 < 8
116 40 34 112 2 lesub1dd φ 9 1 N 1
117 58 116 eqbrtrrid φ 8 N 1
118 110 111 113 115 117 ltletrd φ 0 < N 1
119 109 118 jca φ N 1 0 < N 1
120 elnnz N 1 N 1 0 < N 1
121 119 120 sylibr φ N 1
122 121 adantr φ ¬ 2 N N 1
123 107 122 nndivdvdsd φ ¬ 2 N 2 N 1 N 1 2
124 106 123 mpbid φ ¬ 2 N N 1 2
125 44 23 mulcomi 4 2 = 2 4
126 125 46 eqtr3i 2 4 = 8
127 126 50 mpbir 8 2 = 4
128 4 nnrpd φ 2 +
129 111 113 128 117 lediv1dd φ 8 2 N 1 2
130 127 129 eqbrtrrid φ 4 N 1 2
131 130 adantr φ ¬ 2 N 4 N 1 2
132 124 131 lcmineqlem22 φ ¬ 2 N 2 2 N 1 2 + 1 lcm _ 1 2 N 1 2 + 1 2 2 N 1 2 + 2 lcm _ 1 2 N 1 2 + 2
133 132 simpld φ ¬ 2 N 2 2 N 1 2 + 1 lcm _ 1 2 N 1 2 + 1
134 1cnd φ 1
135 88 134 subcld φ N 1
136 135 87 95 divcan2d φ 2 N 1 2 = N 1
137 136 oveq1d φ 2 N 1 2 + 1 = N - 1 + 1
138 88 134 npcand φ N - 1 + 1 = N
139 137 138 eqtrd φ 2 N 1 2 + 1 = N
140 139 oveq2d φ 2 2 N 1 2 + 1 = 2 N
141 139 oveq2d φ 1 2 N 1 2 + 1 = 1 N
142 141 fveq2d φ lcm _ 1 2 N 1 2 + 1 = lcm _ 1 N
143 140 142 breq12d φ 2 2 N 1 2 + 1 lcm _ 1 2 N 1 2 + 1 2 N lcm _ 1 N
144 143 adantr φ ¬ 2 N 2 2 N 1 2 + 1 lcm _ 1 2 N 1 2 + 1 2 N lcm _ 1 N
145 133 144 mpbid φ ¬ 2 N 2 N lcm _ 1 N
146 103 145 pm2.61dan φ 2 N lcm _ 1 N