Metamath Proof Explorer


Theorem lcmineqlem23

Description: Penultimate step to the lcm inequality lemma. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem23.1 φN
lcmineqlem23.2 φ9N
Assertion lcmineqlem23 φ2Nlcm_1N

Proof

Step Hyp Ref Expression
1 lcmineqlem23.1 φN
2 lcmineqlem23.2 φ9N
3 2nn 2
4 3 a1i φ2
5 1 4 jca φN2
6 nndivdvds N22NN2
7 5 6 syl φ2NN2
8 7 biimpa φ2NN2
9 8 nnzd φ2NN2
10 1zzd φ2N1
11 9 10 zsubcld φ2NN21
12 0red φ2N0
13 4re 4
14 13 a1i φ2N4
15 8 nnred φ2NN2
16 1red φ2N1
17 15 16 resubcld φ2NN21
18 4pos 0<4
19 18 a1i φ2N0<4
20 5m1e4 51=4
21 5re 5
22 21 a1i φ2N5
23 3 nncni 2
24 5cn 5
25 23 24 mulcomi 25=52
26 5t2e10 52=10
27 25 26 eqtri 25=10
28 10re 10
29 28 recni 10
30 3 nnne0i 20
31 29 23 24 30 divmuli 102=525=10
32 27 31 mpbir 102=5
33 28 a1i φ2N10
34 1 nnred φN
35 34 adantr φ2NN
36 2rp 2+
37 36 a1i φ2N2+
38 9p1e10 9+1=10
39 9re 9
40 39 a1i φ9
41 40 34 leloed φ9N9<N9=N
42 2 41 mpbid φ9<N9=N
43 42 adantr φ2N9<N9=N
44 4cn 4
45 23 44 mulcomi 24=42
46 4t2e8 42=8
47 45 46 eqtri 24=8
48 8re 8
49 48 recni 8
50 49 23 44 30 divmuli 82=424=8
51 47 50 mpbir 82=4
52 4nn 4
53 51 52 eqeltri 82
54 8nn 8
55 nndivdvds 822882
56 54 3 55 mp2an 2882
57 53 56 mpbir 28
58 9m1e8 91=8
59 57 58 breqtrri 291
60 9nn 9
61 60 nnzi 9
62 oddm1even 9¬29291
63 61 62 ax-mp ¬29291
64 59 63 mpbir ¬29
65 breq2 9=N292N
66 64 65 mtbii 9=N¬2N
67 66 con2i 2N¬9=N
68 67 adantl φ2N¬9=N
69 43 68 olcnd φ2N9<N
70 1 nnzd φN
71 zltp1le 9N9<N9+1N
72 61 71 mpan N9<N9+1N
73 70 72 syl φ9<N9+1N
74 73 adantr φ2N9<N9+1N
75 69 74 mpbid φ2N9+1N
76 38 75 eqbrtrrid φ2N10N
77 33 35 37 76 lediv1dd φ2N102N2
78 32 77 eqbrtrrid φ2N5N2
79 22 15 16 78 lesub1dd φ2N51N21
80 20 79 eqbrtrrid φ2N4N21
81 12 14 17 19 80 ltletrd φ2N0<N21
82 11 81 jca φ2NN210<N21
83 elnnz N21N210<N21
84 82 83 sylibr φ2NN21
85 84 80 lcmineqlem22 φ2N22N21+1lcm_12N21+122N21+2lcm_12N21+2
86 85 simprd φ2N22N21+2lcm_12N21+2
87 4 nncnd φ2
88 1 nncnd φN
89 88 halfcld φN2
90 87 89 muls1d φ2N21=2N22
91 90 oveq1d φ2N21+2=2N2-2+2
92 87 89 mulcld φ2N2
93 92 87 npcand φ2N2-2+2=2N2
94 91 93 eqtrd φ2N21+2=2N2
95 4 nnne0d φ20
96 88 87 95 divcan2d φ2N2=N
97 94 96 eqtrd φ2N21+2=N
98 97 oveq2d φ22N21+2=2N
99 97 oveq2d φ12N21+2=1N
100 99 fveq2d φlcm_12N21+2=lcm_1N
101 98 100 breq12d φ22N21+2lcm_12N21+22Nlcm_1N
102 101 adantr φ2N22N21+2lcm_12N21+22Nlcm_1N
103 86 102 mpbid φ2N2Nlcm_1N
104 oddm1even N¬2N2N1
105 70 104 syl φ¬2N2N1
106 105 biimpa φ¬2N2N1
107 3 a1i φ¬2N2
108 1zzd φ1
109 70 108 zsubcld φN1
110 0red φ0
111 48 a1i φ8
112 1red φ1
113 34 112 resubcld φN1
114 8pos 0<8
115 114 a1i φ0<8
116 40 34 112 2 lesub1dd φ91N1
117 58 116 eqbrtrrid φ8N1
118 110 111 113 115 117 ltletrd φ0<N1
119 109 118 jca φN10<N1
120 elnnz N1N10<N1
121 119 120 sylibr φN1
122 121 adantr φ¬2NN1
123 107 122 nndivdvdsd φ¬2N2N1N12
124 106 123 mpbid φ¬2NN12
125 44 23 mulcomi 42=24
126 125 46 eqtr3i 24=8
127 126 50 mpbir 82=4
128 4 nnrpd φ2+
129 111 113 128 117 lediv1dd φ82N12
130 127 129 eqbrtrrid φ4N12
131 130 adantr φ¬2N4N12
132 124 131 lcmineqlem22 φ¬2N22N12+1lcm_12N12+122N12+2lcm_12N12+2
133 132 simpld φ¬2N22N12+1lcm_12N12+1
134 1cnd φ1
135 88 134 subcld φN1
136 135 87 95 divcan2d φ2N12=N1
137 136 oveq1d φ2N12+1=N-1+1
138 88 134 npcand φN-1+1=N
139 137 138 eqtrd φ2N12+1=N
140 139 oveq2d φ22N12+1=2N
141 139 oveq2d φ12N12+1=1N
142 141 fveq2d φlcm_12N12+1=lcm_1N
143 140 142 breq12d φ22N12+1lcm_12N12+12Nlcm_1N
144 143 adantr φ¬2N22N12+1lcm_12N12+12Nlcm_1N
145 133 144 mpbid φ¬2N2Nlcm_1N
146 103 145 pm2.61dan φ2Nlcm_1N