Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension)
Mersenne primes
lighneallem4a
Next ⟩
lighneallem4b
Metamath Proof Explorer
Ascii
Unicode
Theorem
lighneallem4a
Description:
Lemma 1 for
lighneallem4
.
(Contributed by
AV
, 16-Aug-2021)
Ref
Expression
Assertion
lighneallem4a
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
∧
S
=
A
M
+
1
A
+
1
→
2
≤
S
Proof
Step
Hyp
Ref
Expression
1
2re
⊢
2
∈
ℝ
2
1
a1i
⊢
A
∈
ℤ
≥
2
→
2
∈
ℝ
3
eluzelre
⊢
A
∈
ℤ
≥
2
→
A
∈
ℝ
4
peano2re
⊢
A
∈
ℝ
→
A
+
1
∈
ℝ
5
3
4
syl
⊢
A
∈
ℤ
≥
2
→
A
+
1
∈
ℝ
6
2
5
remulcld
⊢
A
∈
ℤ
≥
2
→
2
A
+
1
∈
ℝ
7
6
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
A
+
1
∈
ℝ
8
eluzge2nn0
⊢
A
∈
ℤ
≥
2
→
A
∈
ℕ
0
9
8
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
∈
ℕ
0
10
eluzge3nn
⊢
M
∈
ℤ
≥
3
→
M
∈
ℕ
11
10
nnnn0d
⊢
M
∈
ℤ
≥
3
→
M
∈
ℕ
0
12
11
adantl
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
M
∈
ℕ
0
13
9
12
nn0expcld
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
M
∈
ℕ
0
14
13
nn0red
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
M
∈
ℝ
15
peano2re
⊢
A
M
∈
ℝ
→
A
M
+
1
∈
ℝ
16
14
15
syl
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
M
+
1
∈
ℝ
17
2
3
remulcld
⊢
A
∈
ℤ
≥
2
→
2
A
∈
ℝ
18
2
17
remulcld
⊢
A
∈
ℤ
≥
2
→
2
2
A
∈
ℝ
19
18
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
2
A
∈
ℝ
20
1red
⊢
A
∈
ℤ
≥
2
→
1
∈
ℝ
21
eluz2nn
⊢
A
∈
ℤ
≥
2
→
A
∈
ℕ
22
21
nnge1d
⊢
A
∈
ℤ
≥
2
→
1
≤
A
23
20
3
3
22
leadd2dd
⊢
A
∈
ℤ
≥
2
→
A
+
1
≤
A
+
A
24
eluzelcn
⊢
A
∈
ℤ
≥
2
→
A
∈
ℂ
25
24
2timesd
⊢
A
∈
ℤ
≥
2
→
2
A
=
A
+
A
26
23
25
breqtrrd
⊢
A
∈
ℤ
≥
2
→
A
+
1
≤
2
A
27
26
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
+
1
≤
2
A
28
2pos
⊢
0
<
2
29
1
28
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
30
29
a1i
⊢
A
∈
ℤ
≥
2
→
2
∈
ℝ
∧
0
<
2
31
5
17
30
3jca
⊢
A
∈
ℤ
≥
2
→
A
+
1
∈
ℝ
∧
2
A
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
32
31
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
+
1
∈
ℝ
∧
2
A
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
33
lemul2
⊢
A
+
1
∈
ℝ
∧
2
A
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
A
+
1
≤
2
A
↔
2
A
+
1
≤
2
2
A
34
32
33
syl
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
+
1
≤
2
A
↔
2
A
+
1
≤
2
2
A
35
27
34
mpbid
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
A
+
1
≤
2
2
A
36
2cn
⊢
2
∈
ℂ
37
36
a1i
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
∈
ℂ
38
24
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
∈
ℂ
39
37
37
38
mulassd
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
⋅
2
A
=
2
2
A
40
sq2
⊢
2
2
=
4
41
4re
⊢
4
∈
ℝ
42
40
41
eqeltri
⊢
2
2
∈
ℝ
43
42
a1i
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
2
∈
ℝ
44
nn0sqcl
⊢
A
∈
ℕ
0
→
A
2
∈
ℕ
0
45
8
44
syl
⊢
A
∈
ℤ
≥
2
→
A
2
∈
ℕ
0
46
45
nn0red
⊢
A
∈
ℤ
≥
2
→
A
2
∈
ℝ
47
46
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
2
∈
ℝ
48
nnm1nn0
⊢
M
∈
ℕ
→
M
−
1
∈
ℕ
0
49
10
48
syl
⊢
M
∈
ℤ
≥
3
→
M
−
1
∈
ℕ
0
50
49
adantl
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
M
−
1
∈
ℕ
0
51
9
50
nn0expcld
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
M
−
1
∈
ℕ
0
52
51
nn0red
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
M
−
1
∈
ℝ
53
2nn0
⊢
2
∈
ℕ
0
54
53
a1i
⊢
A
∈
ℤ
≥
2
→
2
∈
ℕ
0
55
2
3
54
3jca
⊢
A
∈
ℤ
≥
2
→
2
∈
ℝ
∧
A
∈
ℝ
∧
2
∈
ℕ
0
56
55
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
∈
ℝ
∧
A
∈
ℝ
∧
2
∈
ℕ
0
57
0le2
⊢
0
≤
2
58
57
a1i
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
0
≤
2
59
eluzle
⊢
A
∈
ℤ
≥
2
→
2
≤
A
60
59
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
≤
A
61
leexp1a
⊢
2
∈
ℝ
∧
A
∈
ℝ
∧
2
∈
ℕ
0
∧
0
≤
2
∧
2
≤
A
→
2
2
≤
A
2
62
56
58
60
61
syl12anc
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
2
≤
A
2
63
2p1e3
⊢
2
+
1
=
3
64
eluzle
⊢
M
∈
ℤ
≥
3
→
3
≤
M
65
63
64
eqbrtrid
⊢
M
∈
ℤ
≥
3
→
2
+
1
≤
M
66
1red
⊢
M
∈
ℤ
≥
3
→
1
∈
ℝ
67
eluzelre
⊢
M
∈
ℤ
≥
3
→
M
∈
ℝ
68
leaddsub
⊢
2
∈
ℝ
∧
1
∈
ℝ
∧
M
∈
ℝ
→
2
+
1
≤
M
↔
2
≤
M
−
1
69
1
66
67
68
mp3an2i
⊢
M
∈
ℤ
≥
3
→
2
+
1
≤
M
↔
2
≤
M
−
1
70
65
69
mpbid
⊢
M
∈
ℤ
≥
3
→
2
≤
M
−
1
71
70
adantl
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
≤
M
−
1
72
3
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
∈
ℝ
73
2z
⊢
2
∈
ℤ
74
73
a1i
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
∈
ℤ
75
eluzelz
⊢
M
∈
ℤ
≥
3
→
M
∈
ℤ
76
peano2zm
⊢
M
∈
ℤ
→
M
−
1
∈
ℤ
77
75
76
syl
⊢
M
∈
ℤ
≥
3
→
M
−
1
∈
ℤ
78
77
adantl
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
M
−
1
∈
ℤ
79
eluz2gt1
⊢
A
∈
ℤ
≥
2
→
1
<
A
80
79
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
1
<
A
81
72
74
78
80
leexp2d
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
≤
M
−
1
↔
A
2
≤
A
M
−
1
82
71
81
mpbid
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
2
≤
A
M
−
1
83
43
47
52
62
82
letrd
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
2
≤
A
M
−
1
84
36
sqvali
⊢
2
2
=
2
⋅
2
85
84
eqcomi
⊢
2
⋅
2
=
2
2
86
85
a1i
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
⋅
2
=
2
2
87
eluz2n0
⊢
A
∈
ℤ
≥
2
→
A
≠
0
88
87
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
≠
0
89
75
adantl
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
M
∈
ℤ
90
38
88
89
expm1d
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
M
−
1
=
A
M
A
91
90
eqcomd
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
M
A
=
A
M
−
1
92
83
86
91
3brtr4d
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
⋅
2
≤
A
M
A
93
1
1
remulcli
⊢
2
⋅
2
∈
ℝ
94
21
nngt0d
⊢
A
∈
ℤ
≥
2
→
0
<
A
95
3
94
jca
⊢
A
∈
ℤ
≥
2
→
A
∈
ℝ
∧
0
<
A
96
95
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
∈
ℝ
∧
0
<
A
97
lemuldiv
⊢
2
⋅
2
∈
ℝ
∧
A
M
∈
ℝ
∧
A
∈
ℝ
∧
0
<
A
→
2
⋅
2
A
≤
A
M
↔
2
⋅
2
≤
A
M
A
98
93
14
96
97
mp3an2i
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
⋅
2
A
≤
A
M
↔
2
⋅
2
≤
A
M
A
99
92
98
mpbird
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
⋅
2
A
≤
A
M
100
39
99
eqbrtrrd
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
2
A
≤
A
M
101
7
19
14
35
100
letrd
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
A
+
1
≤
A
M
102
14
lep1d
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
M
≤
A
M
+
1
103
7
14
16
101
102
letrd
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
A
+
1
≤
A
M
+
1
104
nnnn0
⊢
A
∈
ℕ
→
A
∈
ℕ
0
105
nn0p1gt0
⊢
A
∈
ℕ
0
→
0
<
A
+
1
106
21
104
105
3syl
⊢
A
∈
ℤ
≥
2
→
0
<
A
+
1
107
5
106
jca
⊢
A
∈
ℤ
≥
2
→
A
+
1
∈
ℝ
∧
0
<
A
+
1
108
107
adantr
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
A
+
1
∈
ℝ
∧
0
<
A
+
1
109
lemuldiv
⊢
2
∈
ℝ
∧
A
M
+
1
∈
ℝ
∧
A
+
1
∈
ℝ
∧
0
<
A
+
1
→
2
A
+
1
≤
A
M
+
1
↔
2
≤
A
M
+
1
A
+
1
110
1
16
108
109
mp3an2i
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
A
+
1
≤
A
M
+
1
↔
2
≤
A
M
+
1
A
+
1
111
103
110
mpbid
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
→
2
≤
A
M
+
1
A
+
1
112
111
3adant3
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
∧
S
=
A
M
+
1
A
+
1
→
2
≤
A
M
+
1
A
+
1
113
breq2
⊢
S
=
A
M
+
1
A
+
1
→
2
≤
S
↔
2
≤
A
M
+
1
A
+
1
114
113
3ad2ant3
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
∧
S
=
A
M
+
1
A
+
1
→
2
≤
S
↔
2
≤
A
M
+
1
A
+
1
115
112
114
mpbird
⊢
A
∈
ℤ
≥
2
∧
M
∈
ℤ
≥
3
∧
S
=
A
M
+
1
A
+
1
→
2
≤
S