Metamath Proof Explorer


Theorem lighneallem4a

Description: Lemma 1 for lighneallem4 . (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion lighneallem4a A2M3S=AM+1A+12S

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i A22
3 eluzelre A2A
4 peano2re AA+1
5 3 4 syl A2A+1
6 2 5 remulcld A22A+1
7 6 adantr A2M32A+1
8 eluzge2nn0 A2A0
9 8 adantr A2M3A0
10 eluzge3nn M3M
11 10 nnnn0d M3M0
12 11 adantl A2M3M0
13 9 12 nn0expcld A2M3AM0
14 13 nn0red A2M3AM
15 peano2re AMAM+1
16 14 15 syl A2M3AM+1
17 2 3 remulcld A22A
18 2 17 remulcld A222A
19 18 adantr A2M322A
20 1red A21
21 eluz2nn A2A
22 21 nnge1d A21A
23 20 3 3 22 leadd2dd A2A+1A+A
24 eluzelcn A2A
25 24 2timesd A22A=A+A
26 23 25 breqtrrd A2A+12A
27 26 adantr A2M3A+12A
28 2pos 0<2
29 1 28 pm3.2i 20<2
30 29 a1i A220<2
31 5 17 30 3jca A2A+12A20<2
32 31 adantr A2M3A+12A20<2
33 lemul2 A+12A20<2A+12A2A+122A
34 32 33 syl A2M3A+12A2A+122A
35 27 34 mpbid A2M32A+122A
36 2cn 2
37 36 a1i A2M32
38 24 adantr A2M3A
39 37 37 38 mulassd A2M322A=22A
40 sq2 22=4
41 4re 4
42 40 41 eqeltri 22
43 42 a1i A2M322
44 nn0sqcl A0A20
45 8 44 syl A2A20
46 45 nn0red A2A2
47 46 adantr A2M3A2
48 nnm1nn0 MM10
49 10 48 syl M3M10
50 49 adantl A2M3M10
51 9 50 nn0expcld A2M3AM10
52 51 nn0red A2M3AM1
53 2nn0 20
54 53 a1i A220
55 2 3 54 3jca A22A20
56 55 adantr A2M32A20
57 0le2 02
58 57 a1i A2M302
59 eluzle A22A
60 59 adantr A2M32A
61 leexp1a 2A20022A22A2
62 56 58 60 61 syl12anc A2M322A2
63 2p1e3 2+1=3
64 eluzle M33M
65 63 64 eqbrtrid M32+1M
66 1red M31
67 eluzelre M3M
68 leaddsub 21M2+1M2M1
69 1 66 67 68 mp3an2i M32+1M2M1
70 65 69 mpbid M32M1
71 70 adantl A2M32M1
72 3 adantr A2M3A
73 2z 2
74 73 a1i A2M32
75 eluzelz M3M
76 peano2zm MM1
77 75 76 syl M3M1
78 77 adantl A2M3M1
79 eluz2gt1 A21<A
80 79 adantr A2M31<A
81 72 74 78 80 leexp2d A2M32M1A2AM1
82 71 81 mpbid A2M3A2AM1
83 43 47 52 62 82 letrd A2M322AM1
84 36 sqvali 22=22
85 84 eqcomi 22=22
86 85 a1i A2M322=22
87 eluz2n0 A2A0
88 87 adantr A2M3A0
89 75 adantl A2M3M
90 38 88 89 expm1d A2M3AM1=AMA
91 90 eqcomd A2M3AMA=AM1
92 83 86 91 3brtr4d A2M322AMA
93 1 1 remulcli 22
94 21 nngt0d A20<A
95 3 94 jca A2A0<A
96 95 adantr A2M3A0<A
97 lemuldiv 22AMA0<A22AAM22AMA
98 93 14 96 97 mp3an2i A2M322AAM22AMA
99 92 98 mpbird A2M322AAM
100 39 99 eqbrtrrd A2M322AAM
101 7 19 14 35 100 letrd A2M32A+1AM
102 14 lep1d A2M3AMAM+1
103 7 14 16 101 102 letrd A2M32A+1AM+1
104 nnnn0 AA0
105 nn0p1gt0 A00<A+1
106 21 104 105 3syl A20<A+1
107 5 106 jca A2A+10<A+1
108 107 adantr A2M3A+10<A+1
109 lemuldiv 2AM+1A+10<A+12A+1AM+12AM+1A+1
110 1 16 108 109 mp3an2i A2M32A+1AM+12AM+1A+1
111 103 110 mpbid A2M32AM+1A+1
112 111 3adant3 A2M3S=AM+1A+12AM+1A+1
113 breq2 S=AM+1A+12S2AM+1A+1
114 113 3ad2ant3 A2M3S=AM+1A+12S2AM+1A+1
115 112 114 mpbird A2M3S=AM+1A+12S