Metamath Proof Explorer


Theorem limsupre2lem

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre2lem.1 _jF
limsupre2lem.2 φA
limsupre2lem.3 φF:A*
Assertion limsupre2lem φlim supFxkjAkjx<FjxkjAkjFj<x

Proof

Step Hyp Ref Expression
1 limsupre2lem.1 _jF
2 limsupre2lem.2 φA
3 limsupre2lem.3 φF:A*
4 reex V
5 4 a1i φV
6 5 2 ssexd φAV
7 3 6 fexd φFV
8 7 limsupcld φlim supF*
9 xrre4 lim supF*lim supFlim supF−∞lim supF+∞
10 8 9 syl φlim supFlim supF−∞lim supF+∞
11 df-ne lim supF−∞¬lim supF=−∞
12 11 a1i φlim supF−∞¬lim supF=−∞
13 1 2 3 limsupmnf φlim supF=−∞xkjAkjFjx
14 13 notbid φ¬lim supF=−∞¬xkjAkjFjx
15 annim kj¬Fjx¬kjFjx
16 15 rexbii jAkj¬FjxjA¬kjFjx
17 rexnal jA¬kjFjx¬jAkjFjx
18 16 17 bitri jAkj¬Fjx¬jAkjFjx
19 18 ralbii kjAkj¬Fjxk¬jAkjFjx
20 ralnex k¬jAkjFjx¬kjAkjFjx
21 19 20 bitri kjAkj¬Fjx¬kjAkjFjx
22 21 rexbii xkjAkj¬Fjxx¬kjAkjFjx
23 rexnal x¬kjAkjFjx¬xkjAkjFjx
24 22 23 bitr2i ¬xkjAkjFjxxkjAkj¬Fjx
25 24 a1i φ¬xkjAkjFjxxkjAkj¬Fjx
26 simplr φxjAx
27 26 rexrd φxjAx*
28 3 adantr φxF:A*
29 28 ffvelcdmda φxjAFj*
30 27 29 xrltnled φxjAx<Fj¬Fjx
31 30 bicomd φxjA¬Fjxx<Fj
32 31 anbi2d φxjAkj¬Fjxkjx<Fj
33 32 rexbidva φxjAkj¬FjxjAkjx<Fj
34 33 ralbidv φxkjAkj¬FjxkjAkjx<Fj
35 34 rexbidva φxkjAkj¬FjxxkjAkjx<Fj
36 25 35 bitrd φ¬xkjAkjFjxxkjAkjx<Fj
37 12 14 36 3bitrd φlim supF−∞xkjAkjx<Fj
38 df-ne lim supF+∞¬lim supF=+∞
39 38 a1i φlim supF+∞¬lim supF=+∞
40 1 2 3 limsuppnf φlim supF=+∞xkjAkjxFj
41 40 notbid φ¬lim supF=+∞¬xkjAkjxFj
42 29 27 xrltnled φxjAFj<x¬xFj
43 42 imbi2d φxjAkjFj<xkj¬xFj
44 43 ralbidva φxjAkjFj<xjAkj¬xFj
45 44 rexbidv φxkjAkjFj<xkjAkj¬xFj
46 45 rexbidva φxkjAkjFj<xxkjAkj¬xFj
47 imnan kj¬xFj¬kjxFj
48 47 ralbii jAkj¬xFjjA¬kjxFj
49 ralnex jA¬kjxFj¬jAkjxFj
50 48 49 bitri jAkj¬xFj¬jAkjxFj
51 50 rexbii kjAkj¬xFjk¬jAkjxFj
52 rexnal k¬jAkjxFj¬kjAkjxFj
53 51 52 bitri kjAkj¬xFj¬kjAkjxFj
54 53 rexbii xkjAkj¬xFjx¬kjAkjxFj
55 rexnal x¬kjAkjxFj¬xkjAkjxFj
56 54 55 bitri xkjAkj¬xFj¬xkjAkjxFj
57 56 a1i φxkjAkj¬xFj¬xkjAkjxFj
58 46 57 bitr2d φ¬xkjAkjxFjxkjAkjFj<x
59 39 41 58 3bitrd φlim supF+∞xkjAkjFj<x
60 37 59 anbi12d φlim supF−∞lim supF+∞xkjAkjx<FjxkjAkjFj<x
61 10 60 bitrd φlim supFxkjAkjx<FjxkjAkjFj<x