Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupre2lem.1 | |
|
limsupre2lem.2 | |
||
limsupre2lem.3 | |
||
Assertion | limsupre2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupre2lem.1 | |
|
2 | limsupre2lem.2 | |
|
3 | limsupre2lem.3 | |
|
4 | reex | |
|
5 | 4 | a1i | |
6 | 5 2 | ssexd | |
7 | 3 6 | fexd | |
8 | 7 | limsupcld | |
9 | xrre4 | |
|
10 | 8 9 | syl | |
11 | df-ne | |
|
12 | 11 | a1i | |
13 | 1 2 3 | limsupmnf | |
14 | 13 | notbid | |
15 | annim | |
|
16 | 15 | rexbii | |
17 | rexnal | |
|
18 | 16 17 | bitri | |
19 | 18 | ralbii | |
20 | ralnex | |
|
21 | 19 20 | bitri | |
22 | 21 | rexbii | |
23 | rexnal | |
|
24 | 22 23 | bitr2i | |
25 | 24 | a1i | |
26 | simplr | |
|
27 | 26 | rexrd | |
28 | 3 | adantr | |
29 | 28 | ffvelcdmda | |
30 | 27 29 | xrltnled | |
31 | 30 | bicomd | |
32 | 31 | anbi2d | |
33 | 32 | rexbidva | |
34 | 33 | ralbidv | |
35 | 34 | rexbidva | |
36 | 25 35 | bitrd | |
37 | 12 14 36 | 3bitrd | |
38 | df-ne | |
|
39 | 38 | a1i | |
40 | 1 2 3 | limsuppnf | |
41 | 40 | notbid | |
42 | 29 27 | xrltnled | |
43 | 42 | imbi2d | |
44 | 43 | ralbidva | |
45 | 44 | rexbidv | |
46 | 45 | rexbidva | |
47 | imnan | |
|
48 | 47 | ralbii | |
49 | ralnex | |
|
50 | 48 49 | bitri | |
51 | 50 | rexbii | |
52 | rexnal | |
|
53 | 51 52 | bitri | |
54 | 53 | rexbii | |
55 | rexnal | |
|
56 | 54 55 | bitri | |
57 | 56 | a1i | |
58 | 46 57 | bitr2d | |
59 | 39 41 58 | 3bitrd | |
60 | 37 59 | anbi12d | |
61 | 10 60 | bitrd | |