| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lincvalsn.b |  | 
						
							| 2 |  | lincvalsn.s |  | 
						
							| 3 |  | lincvalsn.r |  | 
						
							| 4 |  | lincvalsn.t |  | 
						
							| 5 |  | lincvalpr.p |  | 
						
							| 6 |  | lincvalpr.f |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 | 7 | 3ad2ant1 |  | 
						
							| 9 | 2 | fveq2i |  | 
						
							| 10 | 3 9 | eqtri |  | 
						
							| 11 | 10 | eleq2i |  | 
						
							| 12 | 11 | biimpi |  | 
						
							| 13 | 12 | anim2i |  | 
						
							| 14 | 13 | 3ad2ant2 |  | 
						
							| 15 | 10 | eleq2i |  | 
						
							| 16 | 15 | biimpi |  | 
						
							| 17 | 16 | anim2i |  | 
						
							| 18 | 17 | 3ad2ant3 |  | 
						
							| 19 |  | fvexd |  | 
						
							| 20 | 19 | anim2i |  | 
						
							| 21 | 20 | ancoms |  | 
						
							| 22 | 21 | 3ad2ant1 |  | 
						
							| 23 | 6 | mapprop |  | 
						
							| 24 | 14 18 22 23 | syl3anc |  | 
						
							| 25 | 1 | eleq2i |  | 
						
							| 26 | 25 | biimpi |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 | 1 | eleq2i |  | 
						
							| 29 | 28 | biimpi |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | prelpwi |  | 
						
							| 32 | 27 30 31 | syl2an |  | 
						
							| 33 | 32 | 3adant1 |  | 
						
							| 34 |  | lincval |  | 
						
							| 35 | 8 24 33 34 | syl3anc |  | 
						
							| 36 |  | lmodcmn |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 37 | 3ad2ant1 |  | 
						
							| 39 |  | simpr |  | 
						
							| 40 |  | simpl |  | 
						
							| 41 |  | simpl |  | 
						
							| 42 | 39 40 41 | 3anim123i |  | 
						
							| 43 |  | 3anrot |  | 
						
							| 44 | 42 43 | sylib |  | 
						
							| 45 | 6 | a1i |  | 
						
							| 46 | 45 | fveq1d |  | 
						
							| 47 |  | simprl |  | 
						
							| 48 |  | simprr |  | 
						
							| 49 | 39 | adantr |  | 
						
							| 50 |  | fvpr1g |  | 
						
							| 51 | 47 48 49 50 | syl3anc |  | 
						
							| 52 | 46 51 | eqtrd |  | 
						
							| 53 | 52 | oveq1d |  | 
						
							| 54 | 7 | adantr |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 1 2 55 3 | lmodvscl |  | 
						
							| 57 | 54 48 47 56 | syl3anc |  | 
						
							| 58 | 53 57 | eqeltrd |  | 
						
							| 59 | 58 | 3adant3 |  | 
						
							| 60 | 6 | a1i |  | 
						
							| 61 | 60 | fveq1d |  | 
						
							| 62 |  | simprl |  | 
						
							| 63 |  | simprr |  | 
						
							| 64 | 39 | adantr |  | 
						
							| 65 |  | fvpr2g |  | 
						
							| 66 | 62 63 64 65 | syl3anc |  | 
						
							| 67 | 61 66 | eqtrd |  | 
						
							| 68 | 67 | oveq1d |  | 
						
							| 69 | 7 | adantr |  | 
						
							| 70 | 1 2 55 3 | lmodvscl |  | 
						
							| 71 | 69 63 62 70 | syl3anc |  | 
						
							| 72 | 68 71 | eqeltrd |  | 
						
							| 73 | 72 | 3adant2 |  | 
						
							| 74 |  | fveq2 |  | 
						
							| 75 |  | id |  | 
						
							| 76 | 74 75 | oveq12d |  | 
						
							| 77 |  | fveq2 |  | 
						
							| 78 |  | id |  | 
						
							| 79 | 77 78 | oveq12d |  | 
						
							| 80 | 1 5 76 79 | gsumpr |  | 
						
							| 81 | 38 44 59 73 80 | syl112anc |  | 
						
							| 82 | 4 | a1i |  | 
						
							| 83 | 82 | eqcomd |  | 
						
							| 84 | 6 | fveq1i |  | 
						
							| 85 | 40 | 3ad2ant2 |  | 
						
							| 86 |  | simpr |  | 
						
							| 87 | 86 | 3ad2ant2 |  | 
						
							| 88 | 39 | 3ad2ant1 |  | 
						
							| 89 | 85 87 88 50 | syl3anc |  | 
						
							| 90 | 84 89 | eqtrid |  | 
						
							| 91 |  | eqidd |  | 
						
							| 92 | 83 90 91 | oveq123d |  | 
						
							| 93 | 6 | fveq1i |  | 
						
							| 94 | 41 | 3ad2ant3 |  | 
						
							| 95 |  | simpr |  | 
						
							| 96 | 95 | 3ad2ant3 |  | 
						
							| 97 | 94 96 88 65 | syl3anc |  | 
						
							| 98 | 93 97 | eqtrid |  | 
						
							| 99 |  | eqidd |  | 
						
							| 100 | 83 98 99 | oveq123d |  | 
						
							| 101 | 92 100 | oveq12d |  | 
						
							| 102 | 35 81 101 | 3eqtrd |  |