Metamath Proof Explorer


Theorem lincvalpr

Description: The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019)

Ref Expression
Hypotheses lincvalsn.b B=BaseM
lincvalsn.s S=ScalarM
lincvalsn.r R=BaseS
lincvalsn.t ·˙=M
lincvalpr.p +˙=+M
lincvalpr.f F=VXWY
Assertion lincvalpr MLModVWVBXRWBYRFlinCMVW=X·˙V+˙Y·˙W

Proof

Step Hyp Ref Expression
1 lincvalsn.b B=BaseM
2 lincvalsn.s S=ScalarM
3 lincvalsn.r R=BaseS
4 lincvalsn.t ·˙=M
5 lincvalpr.p +˙=+M
6 lincvalpr.f F=VXWY
7 simpl MLModVWMLMod
8 7 3ad2ant1 MLModVWVBXRWBYRMLMod
9 2 fveq2i BaseS=BaseScalarM
10 3 9 eqtri R=BaseScalarM
11 10 eleq2i XRXBaseScalarM
12 11 biimpi XRXBaseScalarM
13 12 anim2i VBXRVBXBaseScalarM
14 13 3ad2ant2 MLModVWVBXRWBYRVBXBaseScalarM
15 10 eleq2i YRYBaseScalarM
16 15 biimpi YRYBaseScalarM
17 16 anim2i WBYRWBYBaseScalarM
18 17 3ad2ant3 MLModVWVBXRWBYRWBYBaseScalarM
19 fvexd MLModBaseScalarMV
20 19 anim2i VWMLModVWBaseScalarMV
21 20 ancoms MLModVWVWBaseScalarMV
22 21 3ad2ant1 MLModVWVBXRWBYRVWBaseScalarMV
23 6 mapprop VBXBaseScalarMWBYBaseScalarMVWBaseScalarMVFBaseScalarMVW
24 14 18 22 23 syl3anc MLModVWVBXRWBYRFBaseScalarMVW
25 1 eleq2i VBVBaseM
26 25 biimpi VBVBaseM
27 26 adantr VBXRVBaseM
28 1 eleq2i WBWBaseM
29 28 biimpi WBWBaseM
30 29 adantr WBYRWBaseM
31 prelpwi VBaseMWBaseMVW𝒫BaseM
32 27 30 31 syl2an VBXRWBYRVW𝒫BaseM
33 32 3adant1 MLModVWVBXRWBYRVW𝒫BaseM
34 lincval MLModFBaseScalarMVWVW𝒫BaseMFlinCMVW=MvVWFvMv
35 8 24 33 34 syl3anc MLModVWVBXRWBYRFlinCMVW=MvVWFvMv
36 lmodcmn MLModMCMnd
37 36 adantr MLModVWMCMnd
38 37 3ad2ant1 MLModVWVBXRWBYRMCMnd
39 simpr MLModVWVW
40 simpl VBXRVB
41 simpl WBYRWB
42 39 40 41 3anim123i MLModVWVBXRWBYRVWVBWB
43 3anrot VWVBWBVBWBVW
44 42 43 sylib MLModVWVBXRWBYRVBWBVW
45 6 a1i MLModVWVBXRF=VXWY
46 45 fveq1d MLModVWVBXRFV=VXWYV
47 simprl MLModVWVBXRVB
48 simprr MLModVWVBXRXR
49 39 adantr MLModVWVBXRVW
50 fvpr1g VBXRVWVXWYV=X
51 47 48 49 50 syl3anc MLModVWVBXRVXWYV=X
52 46 51 eqtrd MLModVWVBXRFV=X
53 52 oveq1d MLModVWVBXRFVMV=XMV
54 7 adantr MLModVWVBXRMLMod
55 eqid M=M
56 1 2 55 3 lmodvscl MLModXRVBXMVB
57 54 48 47 56 syl3anc MLModVWVBXRXMVB
58 53 57 eqeltrd MLModVWVBXRFVMVB
59 58 3adant3 MLModVWVBXRWBYRFVMVB
60 6 a1i MLModVWWBYRF=VXWY
61 60 fveq1d MLModVWWBYRFW=VXWYW
62 simprl MLModVWWBYRWB
63 simprr MLModVWWBYRYR
64 39 adantr MLModVWWBYRVW
65 fvpr2g WBYRVWVXWYW=Y
66 62 63 64 65 syl3anc MLModVWWBYRVXWYW=Y
67 61 66 eqtrd MLModVWWBYRFW=Y
68 67 oveq1d MLModVWWBYRFWMW=YMW
69 7 adantr MLModVWWBYRMLMod
70 1 2 55 3 lmodvscl MLModYRWBYMWB
71 69 63 62 70 syl3anc MLModVWWBYRYMWB
72 68 71 eqeltrd MLModVWWBYRFWMWB
73 72 3adant2 MLModVWVBXRWBYRFWMWB
74 fveq2 v=VFv=FV
75 id v=Vv=V
76 74 75 oveq12d v=VFvMv=FVMV
77 fveq2 v=WFv=FW
78 id v=Wv=W
79 77 78 oveq12d v=WFvMv=FWMW
80 1 5 76 79 gsumpr MCMndVBWBVWFVMVBFWMWBMvVWFvMv=FVMV+˙FWMW
81 38 44 59 73 80 syl112anc MLModVWVBXRWBYRMvVWFvMv=FVMV+˙FWMW
82 4 a1i MLModVWVBXRWBYR·˙=M
83 82 eqcomd MLModVWVBXRWBYRM=·˙
84 6 fveq1i FV=VXWYV
85 40 3ad2ant2 MLModVWVBXRWBYRVB
86 simpr VBXRXR
87 86 3ad2ant2 MLModVWVBXRWBYRXR
88 39 3ad2ant1 MLModVWVBXRWBYRVW
89 85 87 88 50 syl3anc MLModVWVBXRWBYRVXWYV=X
90 84 89 eqtrid MLModVWVBXRWBYRFV=X
91 eqidd MLModVWVBXRWBYRV=V
92 83 90 91 oveq123d MLModVWVBXRWBYRFVMV=X·˙V
93 6 fveq1i FW=VXWYW
94 41 3ad2ant3 MLModVWVBXRWBYRWB
95 simpr WBYRYR
96 95 3ad2ant3 MLModVWVBXRWBYRYR
97 94 96 88 65 syl3anc MLModVWVBXRWBYRVXWYW=Y
98 93 97 eqtrid MLModVWVBXRWBYRFW=Y
99 eqidd MLModVWVBXRWBYRW=W
100 83 98 99 oveq123d MLModVWVBXRWBYRFWMW=Y·˙W
101 92 100 oveq12d MLModVWVBXRWBYRFVMV+˙FWMW=X·˙V+˙Y·˙W
102 35 81 101 3eqtrd MLModVWVBXRWBYRFlinCMVW=X·˙V+˙Y·˙W