Metamath Proof Explorer


Theorem lmieu

Description: Uniqueness of the line mirror point. Theorem 10.2 of Schwabhauser p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmieu.l L=Line𝒢G
lmieu.1 φDranL
lmieu.a φAP
Assertion lmieu φ∃!bPAmid𝒢GbDD𝒢GALbA=b

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmieu.l L=Line𝒢G
7 lmieu.1 φDranL
8 lmieu.a φAP
9 8 adantr φADAP
10 simpr φADbPAmid𝒢GbD¬A=b¬A=b
11 eqidd φADbPAmid𝒢GbD¬A=bAmid𝒢Gb=Amid𝒢Gb
12 4 ad4antr φADbPAmid𝒢GbD¬A=bG𝒢Tarski
13 5 ad4antr φADbPAmid𝒢GbD¬A=bGDim𝒢2
14 9 ad3antrrr φADbPAmid𝒢GbD¬A=bAP
15 simpllr φADbPAmid𝒢GbD¬A=bbP
16 eqid pInv𝒢G=pInv𝒢G
17 1 2 3 12 13 14 15 midcl φADbPAmid𝒢GbD¬A=bAmid𝒢GbP
18 1 2 3 12 13 14 15 16 17 ismidb φADbPAmid𝒢GbD¬A=bb=pInv𝒢GAmid𝒢GbAAmid𝒢Gb=Amid𝒢Gb
19 11 18 mpbird φADbPAmid𝒢GbD¬A=bb=pInv𝒢GAmid𝒢GbA
20 19 adantr φADbPAmid𝒢GbD¬A=bDALbb=pInv𝒢GAmid𝒢GbA
21 12 adantr φADbPAmid𝒢GbD¬A=bDALbG𝒢Tarski
22 7 ad4antr φADbPAmid𝒢GbD¬A=bDranL
23 22 adantr φADbPAmid𝒢GbD¬A=bDALbDranL
24 14 adantr φADbPAmid𝒢GbD¬A=bDALbAP
25 15 adantr φADbPAmid𝒢GbD¬A=bDALbbP
26 10 neqned φADbPAmid𝒢GbD¬A=bAb
27 26 adantr φADbPAmid𝒢GbD¬A=bDALbAb
28 1 3 6 21 24 25 27 tgelrnln φADbPAmid𝒢GbD¬A=bDALbALbranL
29 simpr φADbPAmid𝒢GbD¬A=bDALbDALb
30 simp-4r φADbPAmid𝒢GbD¬A=bAD
31 30 adantr φADbPAmid𝒢GbD¬A=bDALbAD
32 1 3 6 21 24 25 27 tglinerflx1 φADbPAmid𝒢GbD¬A=bDALbAALb
33 31 32 elind φADbPAmid𝒢GbD¬A=bDALbADALb
34 simpllr φADbPAmid𝒢GbD¬A=bDALbAmid𝒢GbD
35 1 2 3 12 13 14 15 midbtwn φADbPAmid𝒢GbD¬A=bAmid𝒢GbAIb
36 1 3 6 12 14 15 17 26 35 btwnlng1 φADbPAmid𝒢GbD¬A=bAmid𝒢GbALb
37 36 adantr φADbPAmid𝒢GbD¬A=bDALbAmid𝒢GbALb
38 34 37 elind φADbPAmid𝒢GbD¬A=bDALbAmid𝒢GbDALb
39 1 3 6 21 23 28 29 33 38 tglineineq φADbPAmid𝒢GbD¬A=bDALbA=Amid𝒢Gb
40 39 fveq2d φADbPAmid𝒢GbD¬A=bDALbpInv𝒢GA=pInv𝒢GAmid𝒢Gb
41 40 fveq1d φADbPAmid𝒢GbD¬A=bDALbpInv𝒢GAA=pInv𝒢GAmid𝒢GbA
42 eqid pInv𝒢GA=pInv𝒢GA
43 1 2 3 6 16 21 24 42 mircinv φADbPAmid𝒢GbD¬A=bDALbpInv𝒢GAA=A
44 20 41 43 3eqtr2rd φADbPAmid𝒢GbD¬A=bDALbA=b
45 10 44 mtand φADbPAmid𝒢GbD¬A=b¬DALb
46 4 ad5antr φADbPAmid𝒢GbD¬A=bD𝒢GALbG𝒢Tarski
47 7 ad5antr φADbPAmid𝒢GbD¬A=bD𝒢GALbDranL
48 nne ¬DALbD=ALb
49 45 48 sylib φADbPAmid𝒢GbD¬A=bD=ALb
50 49 adantr φADbPAmid𝒢GbD¬A=bD𝒢GALbD=ALb
51 50 47 eqeltrrd φADbPAmid𝒢GbD¬A=bD𝒢GALbALbranL
52 simpr φADbPAmid𝒢GbD¬A=bD𝒢GALbD𝒢GALb
53 1 2 3 6 46 47 51 52 perpneq φADbPAmid𝒢GbD¬A=bD𝒢GALbDALb
54 45 53 mtand φADbPAmid𝒢GbD¬A=b¬D𝒢GALb
55 54 ex φADbPAmid𝒢GbD¬A=b¬D𝒢GALb
56 55 con4d φADbPAmid𝒢GbDD𝒢GALbA=b
57 idd φADbPAmid𝒢GbDA=bA=b
58 56 57 jaod φADbPAmid𝒢GbDD𝒢GALbA=bA=b
59 58 impr φADbPAmid𝒢GbDD𝒢GALbA=bA=b
60 59 eqcomd φADbPAmid𝒢GbDD𝒢GALbA=bb=A
61 simpr φADbPb=Ab=A
62 61 oveq2d φADbPb=AAmid𝒢Gb=Amid𝒢GA
63 1 2 3 4 5 8 8 midid φAmid𝒢GA=A
64 63 ad3antrrr φADbPb=AAmid𝒢GA=A
65 62 64 eqtrd φADbPb=AAmid𝒢Gb=A
66 simpllr φADbPb=AAD
67 65 66 eqeltrd φADbPb=AAmid𝒢GbD
68 61 eqcomd φADbPb=AA=b
69 68 olcd φADbPb=AD𝒢GALbA=b
70 67 69 jca φADbPb=AAmid𝒢GbDD𝒢GALbA=b
71 60 70 impbida φADbPAmid𝒢GbDD𝒢GALbA=bb=A
72 71 ralrimiva φADbPAmid𝒢GbDD𝒢GALbA=bb=A
73 reu6i APbPAmid𝒢GbDD𝒢GALbA=bb=A∃!bPAmid𝒢GbDD𝒢GALbA=b
74 9 72 73 syl2anc φAD∃!bPAmid𝒢GbDD𝒢GALbA=b
75 4 adantr φ¬ADG𝒢Tarski
76 75 ad2antrr φ¬ADxDALx𝒢GDG𝒢Tarski
77 7 adantr φ¬ADDranL
78 77 ad2antrr φ¬ADxDALx𝒢GDDranL
79 simplr φ¬ADxDALx𝒢GDxD
80 1 6 3 76 78 79 tglnpt φ¬ADxDALx𝒢GDxP
81 eqid pInv𝒢Gx=pInv𝒢Gx
82 8 adantr φ¬ADAP
83 82 ad2antrr φ¬ADxDALx𝒢GDAP
84 1 2 3 6 16 76 80 81 83 mircl φ¬ADxDALx𝒢GDpInv𝒢GxAP
85 oveq2 x=Amid𝒢GbALx=ALAmid𝒢Gb
86 85 breq1d x=Amid𝒢GbALx𝒢GDALAmid𝒢Gb𝒢GD
87 simprl φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bAmid𝒢GbD
88 simpr φ¬AD¬AD
89 1 2 3 6 75 77 82 88 foot φ¬AD∃!xDALx𝒢GD
90 reurmo ∃!xDALx𝒢GD*xDALx𝒢GD
91 89 90 syl φ¬AD*xDALx𝒢GD
92 91 ad4antr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=b*xDALx𝒢GD
93 79 ad2antrr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bxD
94 simpllr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bALx𝒢GD
95 76 ad2antrr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bG𝒢Tarski
96 83 ad2antrr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bAP
97 simplr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bbP
98 5 ad5antr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bGDim𝒢2
99 1 2 3 95 98 96 97 midcl φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bAmid𝒢GbP
100 1 2 3 95 98 96 97 midbtwn φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bAmid𝒢GbAIb
101 88 ad4antr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=b¬AD
102 nelne2 Amid𝒢GbD¬ADAmid𝒢GbA
103 87 101 102 syl2anc φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bAmid𝒢GbA
104 1 2 3 95 96 99 97 100 103 tgbtwnne φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bAb
105 1 3 6 95 96 97 99 104 100 btwnlng1 φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bAmid𝒢GbALb
106 1 3 6 95 96 97 104 99 103 105 tglineelsb2 φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bALb=ALAmid𝒢Gb
107 78 ad2antrr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bDranL
108 1 3 6 95 96 97 104 tgelrnln φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bALbranL
109 104 neneqd φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=b¬A=b
110 simprr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bD𝒢GALbA=b
111 110 orcomd φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bA=bD𝒢GALb
112 111 ord φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=b¬A=bD𝒢GALb
113 109 112 mpd φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bD𝒢GALb
114 1 2 3 6 95 107 108 113 perpcom φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bALb𝒢GD
115 106 114 eqbrtrrd φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bALAmid𝒢Gb𝒢GD
116 86 87 92 93 94 115 rmoi2 φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bx=Amid𝒢Gb
117 116 eqcomd φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bAmid𝒢Gb=x
118 80 ad2antrr φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bxP
119 1 2 3 95 98 96 97 16 118 ismidb φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bb=pInv𝒢GxAAmid𝒢Gb=x
120 117 119 mpbird φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bb=pInv𝒢GxA
121 simpr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAb=pInv𝒢GxA
122 76 ad2antrr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAG𝒢Tarski
123 5 ad5antr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAGDim𝒢2
124 83 ad2antrr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAP
125 simplr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAbP
126 80 ad2antrr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAxP
127 1 2 3 122 123 124 125 16 126 ismidb φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAb=pInv𝒢GxAAmid𝒢Gb=x
128 121 127 mpbid φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAmid𝒢Gb=x
129 79 ad2antrr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAxD
130 128 129 eqeltrd φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAmid𝒢GbD
131 122 adantr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbG𝒢Tarski
132 simp-4r φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbALx𝒢GD
133 6 131 132 perpln1 φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbALxranL
134 78 ad3antrrr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbDranL
135 1 2 3 6 131 133 134 132 perpcom φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbD𝒢GALx
136 124 adantr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbAP
137 126 adantr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbxP
138 1 3 6 131 136 137 133 tglnne φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbAx
139 simpllr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbbP
140 simpr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbAb
141 140 necomd φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbbA
142 1 2 3 6 16 131 137 81 136 mirbtwn φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbxpInv𝒢GxAIA
143 simplr φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbb=pInv𝒢GxA
144 143 oveq1d φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbbIA=pInv𝒢GxAIA
145 142 144 eleqtrrd φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbxbIA
146 1 3 6 131 139 136 137 141 145 btwnlng1 φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbxbLA
147 1 3 6 131 136 137 139 138 146 141 lnrot1 φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbbALx
148 1 3 6 131 136 137 138 139 141 147 tglineelsb2 φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbALx=ALb
149 135 148 breqtrd φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbD𝒢GALb
150 149 ex φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAbD𝒢GALb
151 150 necon1bd φ¬ADxDALx𝒢GDbPb=pInv𝒢GxA¬D𝒢GALbA=b
152 151 orrd φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAD𝒢GALbA=b
153 130 152 jca φ¬ADxDALx𝒢GDbPb=pInv𝒢GxAAmid𝒢GbDD𝒢GALbA=b
154 120 153 impbida φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bb=pInv𝒢GxA
155 154 ralrimiva φ¬ADxDALx𝒢GDbPAmid𝒢GbDD𝒢GALbA=bb=pInv𝒢GxA
156 reu6i pInv𝒢GxAPbPAmid𝒢GbDD𝒢GALbA=bb=pInv𝒢GxA∃!bPAmid𝒢GbDD𝒢GALbA=b
157 84 155 156 syl2anc φ¬ADxDALx𝒢GD∃!bPAmid𝒢GbDD𝒢GALbA=b
158 1 2 3 6 75 77 82 88 footex φ¬ADxDALx𝒢GD
159 157 158 r19.29a φ¬AD∃!bPAmid𝒢GbDD𝒢GALbA=b
160 74 159 pm2.61dan φ∃!bPAmid𝒢GbDD𝒢GALbA=b