Metamath Proof Explorer


Theorem lmss

Description: Limit on a subspace. (Contributed by NM, 30-Jan-2008) (Revised by Mario Carneiro, 30-Dec-2013)

Ref Expression
Hypotheses lmss.1 K=J𝑡Y
lmss.2 Z=M
lmss.3 φYV
lmss.4 φJTop
lmss.5 φPY
lmss.6 φM
lmss.7 φF:ZY
Assertion lmss φFtJPFtKP

Proof

Step Hyp Ref Expression
1 lmss.1 K=J𝑡Y
2 lmss.2 Z=M
3 lmss.3 φYV
4 lmss.4 φJTop
5 lmss.5 φPY
6 lmss.6 φM
7 lmss.7 φF:ZY
8 toptopon2 JTopJTopOnJ
9 4 8 sylib φJTopOnJ
10 lmcl JTopOnJFtJPPJ
11 9 10 sylan φFtJPPJ
12 lmfss JTopOnJFtJPF×J
13 9 12 sylan φFtJPF×J
14 rnss F×JranFran×J
15 13 14 syl φFtJPranFran×J
16 rnxpss ran×JJ
17 15 16 sstrdi φFtJPranFJ
18 11 17 jca φFtJPPJranFJ
19 18 ex φFtJPPJranFJ
20 resttopon2 JTopOnJYVJ𝑡YTopOnYJ
21 9 3 20 syl2anc φJ𝑡YTopOnYJ
22 1 21 eqeltrid φKTopOnYJ
23 lmcl KTopOnYJFtKPPYJ
24 22 23 sylan φFtKPPYJ
25 24 elin2d φFtKPPJ
26 lmfss KTopOnYJFtKPF×YJ
27 22 26 sylan φFtKPF×YJ
28 rnss F×YJranFran×YJ
29 27 28 syl φFtKPranFran×YJ
30 rnxpss ran×YJYJ
31 29 30 sstrdi φFtKPranFYJ
32 inss2 YJJ
33 31 32 sstrdi φFtKPranFJ
34 25 33 jca φFtKPPJranFJ
35 34 ex φFtKPPJranFJ
36 simprl φPJranFJPJ
37 5 adantr φPJranFJPY
38 37 36 elind φPJranFJPYJ
39 36 38 2thd φPJranFJPJPYJ
40 1 eleq2i vKvJ𝑡Y
41 4 adantr φPJranFJJTop
42 3 adantr φPJranFJYV
43 elrest JTopYVvJ𝑡YuJv=uY
44 41 42 43 syl2anc φPJranFJvJ𝑡YuJv=uY
45 44 biimpa φPJranFJvJ𝑡YuJv=uY
46 40 45 sylan2b φPJranFJvKuJv=uY
47 r19.29r uJv=uYuJPujZkjFkuuJv=uYPujZkjFku
48 37 biantrud φPJranFJPuPuPY
49 elin PuYPuPY
50 48 49 bitr4di φPJranFJPuPuY
51 2 uztrn2 jZkjkZ
52 7 adantr φPJranFJF:ZY
53 52 ffvelcdmda φPJranFJkZFkY
54 53 biantrud φPJranFJkZFkuFkuFkY
55 elin FkuYFkuFkY
56 54 55 bitr4di φPJranFJkZFkuFkuY
57 51 56 sylan2 φPJranFJjZkjFkuFkuY
58 57 anassrs φPJranFJjZkjFkuFkuY
59 58 ralbidva φPJranFJjZkjFkukjFkuY
60 59 rexbidva φPJranFJjZkjFkujZkjFkuY
61 50 60 imbi12d φPJranFJPujZkjFkuPuYjZkjFkuY
62 61 adantr φPJranFJuJPujZkjFkuPuYjZkjFkuY
63 62 biimpd φPJranFJuJPujZkjFkuPuYjZkjFkuY
64 eleq2 v=uYPvPuY
65 eleq2 v=uYFkvFkuY
66 65 rexralbidv v=uYjZkjFkvjZkjFkuY
67 64 66 imbi12d v=uYPvjZkjFkvPuYjZkjFkuY
68 67 imbi2d v=uYPujZkjFkuPvjZkjFkvPujZkjFkuPuYjZkjFkuY
69 63 68 syl5ibrcom φPJranFJuJv=uYPujZkjFkuPvjZkjFkv
70 69 impd φPJranFJuJv=uYPujZkjFkuPvjZkjFkv
71 70 rexlimdva φPJranFJuJv=uYPujZkjFkuPvjZkjFkv
72 47 71 syl5 φPJranFJuJv=uYuJPujZkjFkuPvjZkjFkv
73 72 expdimp φPJranFJuJv=uYuJPujZkjFkuPvjZkjFkv
74 46 73 syldan φPJranFJvKuJPujZkjFkuPvjZkjFkv
75 74 ralrimdva φPJranFJuJPujZkjFkuvKPvjZkjFkv
76 41 adantr φPJranFJuJJTop
77 42 adantr φPJranFJuJYV
78 simpr φPJranFJuJuJ
79 elrestr JTopYVuJuYJ𝑡Y
80 76 77 78 79 syl3anc φPJranFJuJuYJ𝑡Y
81 80 1 eleqtrrdi φPJranFJuJuYK
82 67 rspcv uYKvKPvjZkjFkvPuYjZkjFkuY
83 81 82 syl φPJranFJuJvKPvjZkjFkvPuYjZkjFkuY
84 83 62 sylibrd φPJranFJuJvKPvjZkjFkvPujZkjFku
85 84 ralrimdva φPJranFJvKPvjZkjFkvuJPujZkjFku
86 75 85 impbid φPJranFJuJPujZkjFkuvKPvjZkjFkv
87 39 86 anbi12d φPJranFJPJuJPujZkjFkuPYJvKPvjZkjFkv
88 41 8 sylib φPJranFJJTopOnJ
89 6 adantr φPJranFJM
90 52 ffnd φPJranFJFFnZ
91 simprr φPJranFJranFJ
92 df-f F:ZJFFnZranFJ
93 90 91 92 sylanbrc φPJranFJF:ZJ
94 eqidd φPJranFJkZFk=Fk
95 88 2 89 93 94 lmbrf φPJranFJFtJPPJuJPujZkjFku
96 22 adantr φPJranFJKTopOnYJ
97 52 frnd φPJranFJranFY
98 97 91 ssind φPJranFJranFYJ
99 df-f F:ZYJFFnZranFYJ
100 90 98 99 sylanbrc φPJranFJF:ZYJ
101 96 2 89 100 94 lmbrf φPJranFJFtKPPYJvKPvjZkjFkv
102 87 95 101 3bitr4d φPJranFJFtJPFtKP
103 102 ex φPJranFJFtJPFtKP
104 19 35 103 pm5.21ndd φFtJPFtKP