| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmss.1 |
|
| 2 |
|
lmss.2 |
|
| 3 |
|
lmss.3 |
|
| 4 |
|
lmss.4 |
|
| 5 |
|
lmss.5 |
|
| 6 |
|
lmss.6 |
|
| 7 |
|
lmss.7 |
|
| 8 |
|
toptopon2 |
|
| 9 |
4 8
|
sylib |
|
| 10 |
|
lmcl |
|
| 11 |
9 10
|
sylan |
|
| 12 |
|
lmfss |
|
| 13 |
9 12
|
sylan |
|
| 14 |
|
rnss |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
rnxpss |
|
| 17 |
15 16
|
sstrdi |
|
| 18 |
11 17
|
jca |
|
| 19 |
18
|
ex |
|
| 20 |
|
resttopon2 |
|
| 21 |
9 3 20
|
syl2anc |
|
| 22 |
1 21
|
eqeltrid |
|
| 23 |
|
lmcl |
|
| 24 |
22 23
|
sylan |
|
| 25 |
24
|
elin2d |
|
| 26 |
|
lmfss |
|
| 27 |
22 26
|
sylan |
|
| 28 |
|
rnss |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
rnxpss |
|
| 31 |
29 30
|
sstrdi |
|
| 32 |
|
inss2 |
|
| 33 |
31 32
|
sstrdi |
|
| 34 |
25 33
|
jca |
|
| 35 |
34
|
ex |
|
| 36 |
|
simprl |
|
| 37 |
5
|
adantr |
|
| 38 |
37 36
|
elind |
|
| 39 |
36 38
|
2thd |
|
| 40 |
1
|
eleq2i |
|
| 41 |
4
|
adantr |
|
| 42 |
3
|
adantr |
|
| 43 |
|
elrest |
|
| 44 |
41 42 43
|
syl2anc |
|
| 45 |
44
|
biimpa |
|
| 46 |
40 45
|
sylan2b |
|
| 47 |
|
r19.29r |
|
| 48 |
37
|
biantrud |
|
| 49 |
|
elin |
|
| 50 |
48 49
|
bitr4di |
|
| 51 |
2
|
uztrn2 |
|
| 52 |
7
|
adantr |
|
| 53 |
52
|
ffvelcdmda |
|
| 54 |
53
|
biantrud |
|
| 55 |
|
elin |
|
| 56 |
54 55
|
bitr4di |
|
| 57 |
51 56
|
sylan2 |
|
| 58 |
57
|
anassrs |
|
| 59 |
58
|
ralbidva |
|
| 60 |
59
|
rexbidva |
|
| 61 |
50 60
|
imbi12d |
|
| 62 |
61
|
adantr |
|
| 63 |
62
|
biimpd |
|
| 64 |
|
eleq2 |
|
| 65 |
|
eleq2 |
|
| 66 |
65
|
rexralbidv |
|
| 67 |
64 66
|
imbi12d |
|
| 68 |
67
|
imbi2d |
|
| 69 |
63 68
|
syl5ibrcom |
|
| 70 |
69
|
impd |
|
| 71 |
70
|
rexlimdva |
|
| 72 |
47 71
|
syl5 |
|
| 73 |
72
|
expdimp |
|
| 74 |
46 73
|
syldan |
|
| 75 |
74
|
ralrimdva |
|
| 76 |
41
|
adantr |
|
| 77 |
42
|
adantr |
|
| 78 |
|
simpr |
|
| 79 |
|
elrestr |
|
| 80 |
76 77 78 79
|
syl3anc |
|
| 81 |
80 1
|
eleqtrrdi |
|
| 82 |
67
|
rspcv |
|
| 83 |
81 82
|
syl |
|
| 84 |
83 62
|
sylibrd |
|
| 85 |
84
|
ralrimdva |
|
| 86 |
75 85
|
impbid |
|
| 87 |
39 86
|
anbi12d |
|
| 88 |
41 8
|
sylib |
|
| 89 |
6
|
adantr |
|
| 90 |
52
|
ffnd |
|
| 91 |
|
simprr |
|
| 92 |
|
df-f |
|
| 93 |
90 91 92
|
sylanbrc |
|
| 94 |
|
eqidd |
|
| 95 |
88 2 89 93 94
|
lmbrf |
|
| 96 |
22
|
adantr |
|
| 97 |
52
|
frnd |
|
| 98 |
97 91
|
ssind |
|
| 99 |
|
df-f |
|
| 100 |
90 98 99
|
sylanbrc |
|
| 101 |
96 2 89 100 94
|
lmbrf |
|
| 102 |
87 95 101
|
3bitr4d |
|
| 103 |
102
|
ex |
|
| 104 |
19 35 103
|
pm5.21ndd |
|