Metamath Proof Explorer


Theorem logimul

Description: Multiplying a number by _i increases the logarithm of the number by _i _pi / 2 . (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion logimul AA00AlogiA=logA+iπ2

Proof

Step Hyp Ref Expression
1 logcl AA0logA
2 1 3adant3 AA00AlogA
3 ax-icn i
4 halfpire π2
5 4 recni π2
6 3 5 mulcli iπ2
7 efadd logAiπ2elogA+iπ2=elogAeiπ2
8 2 6 7 sylancl AA00AelogA+iπ2=elogAeiπ2
9 eflog AA0elogA=A
10 9 3adant3 AA00AelogA=A
11 efhalfpi eiπ2=i
12 11 a1i AA00Aeiπ2=i
13 10 12 oveq12d AA00AelogAeiπ2=Ai
14 simp1 AA00AA
15 mulcom AiAi=iA
16 14 3 15 sylancl AA00AAi=iA
17 8 13 16 3eqtrd AA00AelogA+iπ2=iA
18 17 fveq2d AA00AlogelogA+iπ2=logiA
19 addcl logAiπ2logA+iπ2
20 2 6 19 sylancl AA00AlogA+iπ2
21 pire π
22 21 renegcli π
23 22 a1i AA00Aπ
24 2 imcld AA00AlogA
25 readdcl logAπ2logA+π2
26 24 4 25 sylancl AA00AlogA+π2
27 logimcl AA0π<logAlogAπ
28 27 3adant3 AA00Aπ<logAlogAπ
29 28 simpld AA00Aπ<logA
30 pirp π+
31 rphalfcl π+π2+
32 30 31 ax-mp π2+
33 ltaddrp logAπ2+logA<logA+π2
34 24 32 33 sylancl AA00AlogA<logA+π2
35 23 24 26 29 34 lttrd AA00Aπ<logA+π2
36 imadd logAiπ2logA+iπ2=logA+iπ2
37 2 6 36 sylancl AA00AlogA+iπ2=logA+iπ2
38 reim π2π2=iπ2
39 5 38 ax-mp π2=iπ2
40 rere π2π2=π2
41 4 40 ax-mp π2=π2
42 39 41 eqtr3i iπ2=π2
43 42 oveq2i logA+iπ2=logA+π2
44 37 43 eqtrdi AA00AlogA+iπ2=logA+π2
45 35 44 breqtrrd AA00Aπ<logA+iπ2
46 argrege0 AA00AlogAπ2π2
47 4 renegcli π2
48 47 4 elicc2i logAπ2π2logAπ2logAlogAπ2
49 48 simp3bi logAπ2π2logAπ2
50 46 49 syl AA00AlogAπ2
51 21 recni π
52 pidiv2halves π2+π2=π
53 51 5 5 52 subaddrii ππ2=π2
54 50 53 breqtrrdi AA00AlogAππ2
55 4 a1i AA00Aπ2
56 21 a1i AA00Aπ
57 leaddsub logAπ2πlogA+π2πlogAππ2
58 24 55 56 57 syl3anc AA00AlogA+π2πlogAππ2
59 54 58 mpbird AA00AlogA+π2π
60 44 59 eqbrtrd AA00AlogA+iπ2π
61 ellogrn logA+iπ2ranloglogA+iπ2π<logA+iπ2logA+iπ2π
62 20 45 60 61 syl3anbrc AA00AlogA+iπ2ranlog
63 logef logA+iπ2ranloglogelogA+iπ2=logA+iπ2
64 62 63 syl AA00AlogelogA+iπ2=logA+iπ2
65 18 64 eqtr3d AA00AlogiA=logA+iπ2