Metamath Proof Explorer


Theorem logsqvma2

Description: The Möbius inverse of logsqvma . Equation 10.4.8 of Shapiro, p. 418. (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Assertion logsqvma2 N d x | x N μ d log N d 2 = d x | x N Λ d Λ N d + Λ N log N

Proof

Step Hyp Ref Expression
1 fzfid k 1 k Fin
2 dvdsssfz1 k x | x k 1 k
3 1 2 ssfid k x | x k Fin
4 ssrab2 x | x k
5 simpr k d x | x k d x | x k
6 4 5 sselid k d x | x k d
7 vmacl d Λ d
8 6 7 syl k d x | x k Λ d
9 dvdsdivcl k d x | x k k d x | x k
10 4 9 sselid k d x | x k k d
11 vmacl k d Λ k d
12 10 11 syl k d x | x k Λ k d
13 8 12 remulcld k d x | x k Λ d Λ k d
14 3 13 fsumrecl k d x | x k Λ d Λ k d
15 vmacl k Λ k
16 nnrp k k +
17 16 relogcld k log k
18 15 17 remulcld k Λ k log k
19 14 18 readdcld k d x | x k Λ d Λ k d + Λ k log k
20 19 recnd k d x | x k Λ d Λ k d + Λ k log k
21 20 adantl N k d x | x k Λ d Λ k d + Λ k log k
22 21 fmpttd N k d x | x k Λ d Λ k d + Λ k log k :
23 ssrab2 x | x n
24 simpr N n m x | x n m x | x n
25 23 24 sselid N n m x | x n m
26 breq2 k = m x k x m
27 26 rabbidv k = m x | x k = x | x m
28 fvoveq1 k = m Λ k d = Λ m d
29 28 oveq2d k = m Λ d Λ k d = Λ d Λ m d
30 29 adantr k = m d x | x k Λ d Λ k d = Λ d Λ m d
31 27 30 sumeq12dv k = m d x | x k Λ d Λ k d = d x | x m Λ d Λ m d
32 fveq2 k = m Λ k = Λ m
33 fveq2 k = m log k = log m
34 32 33 oveq12d k = m Λ k log k = Λ m log m
35 31 34 oveq12d k = m d x | x k Λ d Λ k d + Λ k log k = d x | x m Λ d Λ m d + Λ m log m
36 eqid k d x | x k Λ d Λ k d + Λ k log k = k d x | x k Λ d Λ k d + Λ k log k
37 ovex d x | x k Λ d Λ k d + Λ k log k V
38 35 36 37 fvmpt3i m k d x | x k Λ d Λ k d + Λ k log k m = d x | x m Λ d Λ m d + Λ m log m
39 25 38 syl N n m x | x n k d x | x k Λ d Λ k d + Λ k log k m = d x | x m Λ d Λ m d + Λ m log m
40 39 sumeq2dv N n m x | x n k d x | x k Λ d Λ k d + Λ k log k m = m x | x n d x | x m Λ d Λ m d + Λ m log m
41 logsqvma n m x | x n d x | x m Λ d Λ m d + Λ m log m = log n 2
42 41 adantl N n m x | x n d x | x m Λ d Λ m d + Λ m log m = log n 2
43 40 42 eqtr2d N n log n 2 = m x | x n k d x | x k Λ d Λ k d + Λ k log k m
44 43 mpteq2dva N n log n 2 = n m x | x n k d x | x k Λ d Λ k d + Λ k log k m
45 22 44 muinv N k d x | x k Λ d Λ k d + Λ k log k = i j x | x i μ j n log n 2 i j
46 45 fveq1d N k d x | x k Λ d Λ k d + Λ k log k N = i j x | x i μ j n log n 2 i j N
47 breq2 k = N x k x N
48 47 rabbidv k = N x | x k = x | x N
49 fvoveq1 k = N Λ k d = Λ N d
50 49 oveq2d k = N Λ d Λ k d = Λ d Λ N d
51 50 adantr k = N d x | x k Λ d Λ k d = Λ d Λ N d
52 48 51 sumeq12dv k = N d x | x k Λ d Λ k d = d x | x N Λ d Λ N d
53 fveq2 k = N Λ k = Λ N
54 fveq2 k = N log k = log N
55 53 54 oveq12d k = N Λ k log k = Λ N log N
56 52 55 oveq12d k = N d x | x k Λ d Λ k d + Λ k log k = d x | x N Λ d Λ N d + Λ N log N
57 56 36 37 fvmpt3i N k d x | x k Λ d Λ k d + Λ k log k N = d x | x N Λ d Λ N d + Λ N log N
58 fveq2 j = d μ j = μ d
59 oveq2 j = d i j = i d
60 59 fveq2d j = d log i j = log i d
61 60 oveq1d j = d log i j 2 = log i d 2
62 58 61 oveq12d j = d μ j log i j 2 = μ d log i d 2
63 62 cbvsumv j x | x i μ j log i j 2 = d x | x i μ d log i d 2
64 breq2 i = N x i x N
65 64 rabbidv i = N x | x i = x | x N
66 fvoveq1 i = N log i d = log N d
67 66 oveq1d i = N log i d 2 = log N d 2
68 67 oveq2d i = N μ d log i d 2 = μ d log N d 2
69 68 adantr i = N d x | x i μ d log i d 2 = μ d log N d 2
70 65 69 sumeq12dv i = N d x | x i μ d log i d 2 = d x | x N μ d log N d 2
71 63 70 eqtrid i = N j x | x i μ j log i j 2 = d x | x N μ d log N d 2
72 ssrab2 x | x i
73 dvdsdivcl i j x | x i i j x | x i
74 72 73 sselid i j x | x i i j
75 fveq2 n = i j log n = log i j
76 75 oveq1d n = i j log n 2 = log i j 2
77 eqid n log n 2 = n log n 2
78 ovex log n 2 V
79 76 77 78 fvmpt3i i j n log n 2 i j = log i j 2
80 74 79 syl i j x | x i n log n 2 i j = log i j 2
81 80 oveq2d i j x | x i μ j n log n 2 i j = μ j log i j 2
82 81 sumeq2dv i j x | x i μ j n log n 2 i j = j x | x i μ j log i j 2
83 82 mpteq2ia i j x | x i μ j n log n 2 i j = i j x | x i μ j log i j 2
84 sumex j x | x i μ j log i j 2 V
85 71 83 84 fvmpt3i N i j x | x i μ j n log n 2 i j N = d x | x N μ d log N d 2
86 46 57 85 3eqtr3rd N d x | x N μ d log N d 2 = d x | x N Λ d Λ N d + Λ N log N