Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
dvdsssfz1 |
|
3 |
1 2
|
ssfid |
|
4 |
|
ssrab2 |
|
5 |
|
simpr |
|
6 |
4 5
|
sselid |
|
7 |
|
vmacl |
|
8 |
6 7
|
syl |
|
9 |
|
dvdsdivcl |
|
10 |
4 9
|
sselid |
|
11 |
|
vmacl |
|
12 |
10 11
|
syl |
|
13 |
8 12
|
remulcld |
|
14 |
3 13
|
fsumrecl |
|
15 |
|
vmacl |
|
16 |
|
nnrp |
|
17 |
16
|
relogcld |
|
18 |
15 17
|
remulcld |
|
19 |
14 18
|
readdcld |
|
20 |
19
|
recnd |
|
21 |
20
|
adantl |
|
22 |
21
|
fmpttd |
|
23 |
|
ssrab2 |
|
24 |
|
simpr |
|
25 |
23 24
|
sselid |
|
26 |
|
breq2 |
|
27 |
26
|
rabbidv |
|
28 |
|
fvoveq1 |
|
29 |
28
|
oveq2d |
|
30 |
29
|
adantr |
|
31 |
27 30
|
sumeq12dv |
|
32 |
|
fveq2 |
|
33 |
|
fveq2 |
|
34 |
32 33
|
oveq12d |
|
35 |
31 34
|
oveq12d |
|
36 |
|
eqid |
|
37 |
|
ovex |
|
38 |
35 36 37
|
fvmpt3i |
|
39 |
25 38
|
syl |
|
40 |
39
|
sumeq2dv |
|
41 |
|
logsqvma |
|
42 |
41
|
adantl |
|
43 |
40 42
|
eqtr2d |
|
44 |
43
|
mpteq2dva |
|
45 |
22 44
|
muinv |
|
46 |
45
|
fveq1d |
|
47 |
|
breq2 |
|
48 |
47
|
rabbidv |
|
49 |
|
fvoveq1 |
|
50 |
49
|
oveq2d |
|
51 |
50
|
adantr |
|
52 |
48 51
|
sumeq12dv |
|
53 |
|
fveq2 |
|
54 |
|
fveq2 |
|
55 |
53 54
|
oveq12d |
|
56 |
52 55
|
oveq12d |
|
57 |
56 36 37
|
fvmpt3i |
|
58 |
|
fveq2 |
|
59 |
|
oveq2 |
|
60 |
59
|
fveq2d |
|
61 |
60
|
oveq1d |
|
62 |
58 61
|
oveq12d |
|
63 |
62
|
cbvsumv |
|
64 |
|
breq2 |
|
65 |
64
|
rabbidv |
|
66 |
|
fvoveq1 |
|
67 |
66
|
oveq1d |
|
68 |
67
|
oveq2d |
|
69 |
68
|
adantr |
|
70 |
65 69
|
sumeq12dv |
|
71 |
63 70
|
eqtrid |
|
72 |
|
ssrab2 |
|
73 |
|
dvdsdivcl |
|
74 |
72 73
|
sselid |
|
75 |
|
fveq2 |
|
76 |
75
|
oveq1d |
|
77 |
|
eqid |
|
78 |
|
ovex |
|
79 |
76 77 78
|
fvmpt3i |
|
80 |
74 79
|
syl |
|
81 |
80
|
oveq2d |
|
82 |
81
|
sumeq2dv |
|
83 |
82
|
mpteq2ia |
|
84 |
|
sumex |
|
85 |
71 83 84
|
fvmpt3i |
|
86 |
46 57 85
|
3eqtr3rd |
|