Metamath Proof Explorer


Theorem logsqvma2

Description: The Möbius inverse of logsqvma . Equation 10.4.8 of Shapiro, p. 418. (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Assertion logsqvma2 Ndx|xNμdlogNd2=dx|xNΛdΛNd+ΛNlogN

Proof

Step Hyp Ref Expression
1 fzfid k1kFin
2 dvdsssfz1 kx|xk1k
3 1 2 ssfid kx|xkFin
4 ssrab2 x|xk
5 simpr kdx|xkdx|xk
6 4 5 sselid kdx|xkd
7 vmacl dΛd
8 6 7 syl kdx|xkΛd
9 dvdsdivcl kdx|xkkdx|xk
10 4 9 sselid kdx|xkkd
11 vmacl kdΛkd
12 10 11 syl kdx|xkΛkd
13 8 12 remulcld kdx|xkΛdΛkd
14 3 13 fsumrecl kdx|xkΛdΛkd
15 vmacl kΛk
16 nnrp kk+
17 16 relogcld klogk
18 15 17 remulcld kΛklogk
19 14 18 readdcld kdx|xkΛdΛkd+Λklogk
20 19 recnd kdx|xkΛdΛkd+Λklogk
21 20 adantl Nkdx|xkΛdΛkd+Λklogk
22 21 fmpttd Nkdx|xkΛdΛkd+Λklogk:
23 ssrab2 x|xn
24 simpr Nnmx|xnmx|xn
25 23 24 sselid Nnmx|xnm
26 breq2 k=mxkxm
27 26 rabbidv k=mx|xk=x|xm
28 fvoveq1 k=mΛkd=Λmd
29 28 oveq2d k=mΛdΛkd=ΛdΛmd
30 29 adantr k=mdx|xkΛdΛkd=ΛdΛmd
31 27 30 sumeq12dv k=mdx|xkΛdΛkd=dx|xmΛdΛmd
32 fveq2 k=mΛk=Λm
33 fveq2 k=mlogk=logm
34 32 33 oveq12d k=mΛklogk=Λmlogm
35 31 34 oveq12d k=mdx|xkΛdΛkd+Λklogk=dx|xmΛdΛmd+Λmlogm
36 eqid kdx|xkΛdΛkd+Λklogk=kdx|xkΛdΛkd+Λklogk
37 ovex dx|xkΛdΛkd+ΛklogkV
38 35 36 37 fvmpt3i mkdx|xkΛdΛkd+Λklogkm=dx|xmΛdΛmd+Λmlogm
39 25 38 syl Nnmx|xnkdx|xkΛdΛkd+Λklogkm=dx|xmΛdΛmd+Λmlogm
40 39 sumeq2dv Nnmx|xnkdx|xkΛdΛkd+Λklogkm=mx|xndx|xmΛdΛmd+Λmlogm
41 logsqvma nmx|xndx|xmΛdΛmd+Λmlogm=logn2
42 41 adantl Nnmx|xndx|xmΛdΛmd+Λmlogm=logn2
43 40 42 eqtr2d Nnlogn2=mx|xnkdx|xkΛdΛkd+Λklogkm
44 43 mpteq2dva Nnlogn2=nmx|xnkdx|xkΛdΛkd+Λklogkm
45 22 44 muinv Nkdx|xkΛdΛkd+Λklogk=ijx|xiμjnlogn2ij
46 45 fveq1d Nkdx|xkΛdΛkd+ΛklogkN=ijx|xiμjnlogn2ijN
47 breq2 k=NxkxN
48 47 rabbidv k=Nx|xk=x|xN
49 fvoveq1 k=NΛkd=ΛNd
50 49 oveq2d k=NΛdΛkd=ΛdΛNd
51 50 adantr k=Ndx|xkΛdΛkd=ΛdΛNd
52 48 51 sumeq12dv k=Ndx|xkΛdΛkd=dx|xNΛdΛNd
53 fveq2 k=NΛk=ΛN
54 fveq2 k=Nlogk=logN
55 53 54 oveq12d k=NΛklogk=ΛNlogN
56 52 55 oveq12d k=Ndx|xkΛdΛkd+Λklogk=dx|xNΛdΛNd+ΛNlogN
57 56 36 37 fvmpt3i Nkdx|xkΛdΛkd+ΛklogkN=dx|xNΛdΛNd+ΛNlogN
58 fveq2 j=dμj=μd
59 oveq2 j=dij=id
60 59 fveq2d j=dlogij=logid
61 60 oveq1d j=dlogij2=logid2
62 58 61 oveq12d j=dμjlogij2=μdlogid2
63 62 cbvsumv jx|xiμjlogij2=dx|xiμdlogid2
64 breq2 i=NxixN
65 64 rabbidv i=Nx|xi=x|xN
66 fvoveq1 i=Nlogid=logNd
67 66 oveq1d i=Nlogid2=logNd2
68 67 oveq2d i=Nμdlogid2=μdlogNd2
69 68 adantr i=Ndx|xiμdlogid2=μdlogNd2
70 65 69 sumeq12dv i=Ndx|xiμdlogid2=dx|xNμdlogNd2
71 63 70 eqtrid i=Njx|xiμjlogij2=dx|xNμdlogNd2
72 ssrab2 x|xi
73 dvdsdivcl ijx|xiijx|xi
74 72 73 sselid ijx|xiij
75 fveq2 n=ijlogn=logij
76 75 oveq1d n=ijlogn2=logij2
77 eqid nlogn2=nlogn2
78 ovex logn2V
79 76 77 78 fvmpt3i ijnlogn2ij=logij2
80 74 79 syl ijx|xinlogn2ij=logij2
81 80 oveq2d ijx|xiμjnlogn2ij=μjlogij2
82 81 sumeq2dv ijx|xiμjnlogn2ij=jx|xiμjlogij2
83 82 mpteq2ia ijx|xiμjnlogn2ij=ijx|xiμjlogij2
84 sumex jx|xiμjlogij2V
85 71 83 84 fvmpt3i Nijx|xiμjnlogn2ijN=dx|xNμdlogNd2
86 46 57 85 3eqtr3rd Ndx|xNμdlogNd2=dx|xNΛdΛNd+ΛNlogN