Metamath Proof Explorer


Theorem lptioo1

Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo1.1 J=topGenran.
lptioo1.2 φA
lptioo1.3 φB*
lptioo1.4 φA<B
Assertion lptioo1 φAlimPtJAB

Proof

Step Hyp Ref Expression
1 lptioo1.1 J=topGenran.
2 lptioo1.2 φA
3 lptioo1.3 φB*
4 lptioo1.4 φA<B
5 difssd φABAAB
6 simpr φxABxAB
7 lbioo ¬AAB
8 eleq1 x=AxABAAB
9 8 biimpcd xABx=AAAB
10 7 9 mtoi xAB¬x=A
11 10 adantl φxAB¬x=A
12 velsn xAx=A
13 11 12 sylnibr φxAB¬xA
14 6 13 eldifd φxABxABA
15 5 14 eqelssd φABA=AB
16 15 ineq2d φabABA=abAB
17 16 ad2antrr φa*b*AababABA=abAB
18 simplrl φa*b*Aaba*
19 simplrr φa*b*Aabb*
20 2 rexrd φA*
21 20 3 jca φA*B*
22 21 ad2antrr φa*b*AabA*B*
23 iooin a*b*A*B*abAB=ifaAAaifbBbB
24 18 19 22 23 syl21anc φa*b*AababAB=ifaAAaifbBbB
25 elioo3g Aaba*b*A*a<AA<b
26 25 biimpi Aaba*b*A*a<AA<b
27 26 simpld Aaba*b*A*
28 27 simp1d Aaba*
29 27 simp3d AabA*
30 26 simprd Aaba<AA<b
31 30 simpld Aaba<A
32 28 29 31 xrltled AabaA
33 32 iftrued AabifaAAa=A
34 33 adantl φa*b*AabifaAAa=A
35 30 simprd AabA<b
36 35 ad2antlr φa*b*AabbBA<b
37 iftrue bBifbBbB=b
38 37 eqcomd bBb=ifbBbB
39 38 adantl φa*b*AabbBb=ifbBbB
40 36 39 breqtrd φa*b*AabbBA<ifbBbB
41 4 ad3antrrr φa*b*Aab¬bBA<B
42 iffalse ¬bBifbBbB=B
43 42 eqcomd ¬bBB=ifbBbB
44 43 adantl φa*b*Aab¬bBB=ifbBbB
45 41 44 breqtrd φa*b*Aab¬bBA<ifbBbB
46 40 45 pm2.61dan φa*b*AabA<ifbBbB
47 34 46 eqbrtrd φa*b*AabifaAAa<ifbBbB
48 20 ad3antrrr φa*b*AabaAA*
49 18 adantr φa*b*Aab¬aAa*
50 48 49 ifclda φa*b*AabifaAAa*
51 19 adantr φa*b*AabbBb*
52 3 ad3antrrr φa*b*Aab¬bBB*
53 51 52 ifclda φa*b*AabifbBbB*
54 ioon0 ifaAAa*ifbBbB*ifaAAaifbBbBifaAAa<ifbBbB
55 50 53 54 syl2anc φa*b*AabifaAAaifbBbBifaAAa<ifbBbB
56 47 55 mpbird φa*b*AabifaAAaifbBbB
57 24 56 eqnetrd φa*b*AababAB
58 17 57 eqnetrd φa*b*AababABA
59 58 ex φa*b*AababABA
60 59 ralrimivva φa*b*AababABA
61 ioossre AB
62 61 a1i φAB
63 1 62 2 islptre φAlimPtJABa*b*AababABA
64 60 63 mpbird φAlimPtJAB