Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lptioo1.1 | |
|
lptioo1.2 | |
||
lptioo1.3 | |
||
lptioo1.4 | |
||
Assertion | lptioo1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lptioo1.1 | |
|
2 | lptioo1.2 | |
|
3 | lptioo1.3 | |
|
4 | lptioo1.4 | |
|
5 | difssd | |
|
6 | simpr | |
|
7 | lbioo | |
|
8 | eleq1 | |
|
9 | 8 | biimpcd | |
10 | 7 9 | mtoi | |
11 | 10 | adantl | |
12 | velsn | |
|
13 | 11 12 | sylnibr | |
14 | 6 13 | eldifd | |
15 | 5 14 | eqelssd | |
16 | 15 | ineq2d | |
17 | 16 | ad2antrr | |
18 | simplrl | |
|
19 | simplrr | |
|
20 | 2 | rexrd | |
21 | 20 3 | jca | |
22 | 21 | ad2antrr | |
23 | iooin | |
|
24 | 18 19 22 23 | syl21anc | |
25 | elioo3g | |
|
26 | 25 | biimpi | |
27 | 26 | simpld | |
28 | 27 | simp1d | |
29 | 27 | simp3d | |
30 | 26 | simprd | |
31 | 30 | simpld | |
32 | 28 29 31 | xrltled | |
33 | 32 | iftrued | |
34 | 33 | adantl | |
35 | 30 | simprd | |
36 | 35 | ad2antlr | |
37 | iftrue | |
|
38 | 37 | eqcomd | |
39 | 38 | adantl | |
40 | 36 39 | breqtrd | |
41 | 4 | ad3antrrr | |
42 | iffalse | |
|
43 | 42 | eqcomd | |
44 | 43 | adantl | |
45 | 41 44 | breqtrd | |
46 | 40 45 | pm2.61dan | |
47 | 34 46 | eqbrtrd | |
48 | 20 | ad3antrrr | |
49 | 18 | adantr | |
50 | 48 49 | ifclda | |
51 | 19 | adantr | |
52 | 3 | ad3antrrr | |
53 | 51 52 | ifclda | |
54 | ioon0 | |
|
55 | 50 53 54 | syl2anc | |
56 | 47 55 | mpbird | |
57 | 24 56 | eqnetrd | |
58 | 17 57 | eqnetrd | |
59 | 58 | ex | |
60 | 59 | ralrimivva | |
61 | ioossre | |
|
62 | 61 | a1i | |
63 | 1 62 2 | islptre | |
64 | 60 63 | mpbird | |