Metamath Proof Explorer


Theorem lshpkrlem1

Description: Lemma for lshpkrex . The value of tentative functional G is zero iff its argument belongs to hyperplane U . (Contributed by NM, 14-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v V=BaseW
lshpkrlem.a +˙=+W
lshpkrlem.n N=LSpanW
lshpkrlem.p ˙=LSSumW
lshpkrlem.h H=LSHypW
lshpkrlem.w φWLVec
lshpkrlem.u φUH
lshpkrlem.z φZV
lshpkrlem.x φXV
lshpkrlem.e φU˙NZ=V
lshpkrlem.d D=ScalarW
lshpkrlem.k K=BaseD
lshpkrlem.t ·˙=W
lshpkrlem.o 0˙=0D
lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
Assertion lshpkrlem1 φXUGX=0˙

Proof

Step Hyp Ref Expression
1 lshpkrlem.v V=BaseW
2 lshpkrlem.a +˙=+W
3 lshpkrlem.n N=LSpanW
4 lshpkrlem.p ˙=LSSumW
5 lshpkrlem.h H=LSHypW
6 lshpkrlem.w φWLVec
7 lshpkrlem.u φUH
8 lshpkrlem.z φZV
9 lshpkrlem.x φXV
10 lshpkrlem.e φU˙NZ=V
11 lshpkrlem.d D=ScalarW
12 lshpkrlem.k K=BaseD
13 lshpkrlem.t ·˙=W
14 lshpkrlem.o 0˙=0D
15 lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
16 lveclmod WLVecWLMod
17 6 16 syl φWLMod
18 11 lmodfgrp WLModDGrp
19 12 14 grpidcl DGrp0˙K
20 17 18 19 3syl φ0˙K
21 1 2 3 4 5 6 7 8 9 10 11 12 13 lshpsmreu φ∃!kKbUX=b+˙k·˙Z
22 oveq1 k=0˙k·˙Z=0˙·˙Z
23 22 oveq2d k=0˙b+˙k·˙Z=b+˙0˙·˙Z
24 23 eqeq2d k=0˙X=b+˙k·˙ZX=b+˙0˙·˙Z
25 24 rexbidv k=0˙bUX=b+˙k·˙ZbUX=b+˙0˙·˙Z
26 25 riota2 0˙K∃!kKbUX=b+˙k·˙ZbUX=b+˙0˙·˙ZιkK|bUX=b+˙k·˙Z=0˙
27 20 21 26 syl2anc φbUX=b+˙0˙·˙ZιkK|bUX=b+˙k·˙Z=0˙
28 simpr φXUXU
29 eqidd φXUX=X
30 eqeq2 b=XX=bX=X
31 30 rspcev XUX=XbUX=b
32 28 29 31 syl2anc φXUbUX=b
33 32 ex φXUbUX=b
34 eleq1a bUX=bXU
35 34 a1i φbUX=bXU
36 35 rexlimdv φbUX=bXU
37 33 36 impbid φXUbUX=b
38 eqid 0W=0W
39 1 11 13 14 38 lmod0vs WLModZV0˙·˙Z=0W
40 17 8 39 syl2anc φ0˙·˙Z=0W
41 40 adantr φbU0˙·˙Z=0W
42 41 oveq2d φbUb+˙0˙·˙Z=b+˙0W
43 6 adantr φbUWLVec
44 43 16 syl φbUWLMod
45 eqid LSubSpW=LSubSpW
46 45 5 17 7 lshplss φULSubSpW
47 1 45 lssel ULSubSpWbUbV
48 46 47 sylan φbUbV
49 1 2 38 lmod0vrid WLModbVb+˙0W=b
50 44 48 49 syl2anc φbUb+˙0W=b
51 42 50 eqtrd φbUb+˙0˙·˙Z=b
52 51 eqeq2d φbUX=b+˙0˙·˙ZX=b
53 52 bicomd φbUX=bX=b+˙0˙·˙Z
54 53 rexbidva φbUX=bbUX=b+˙0˙·˙Z
55 37 54 bitrd φXUbUX=b+˙0˙·˙Z
56 eqeq1 x=Xx=y+˙k·˙ZX=y+˙k·˙Z
57 56 rexbidv x=XyUx=y+˙k·˙ZyUX=y+˙k·˙Z
58 57 riotabidv x=XιkK|yUx=y+˙k·˙Z=ιkK|yUX=y+˙k·˙Z
59 riotaex ιkK|yUX=y+˙k·˙ZV
60 58 15 59 fvmpt XVGX=ιkK|yUX=y+˙k·˙Z
61 oveq1 y=by+˙k·˙Z=b+˙k·˙Z
62 61 eqeq2d y=bX=y+˙k·˙ZX=b+˙k·˙Z
63 62 cbvrexvw yUX=y+˙k·˙ZbUX=b+˙k·˙Z
64 63 a1i kKyUX=y+˙k·˙ZbUX=b+˙k·˙Z
65 64 riotabiia ιkK|yUX=y+˙k·˙Z=ιkK|bUX=b+˙k·˙Z
66 60 65 eqtrdi XVGX=ιkK|bUX=b+˙k·˙Z
67 9 66 syl φGX=ιkK|bUX=b+˙k·˙Z
68 67 eqeq1d φGX=0˙ιkK|bUX=b+˙k·˙Z=0˙
69 27 55 68 3bitr4d φXUGX=0˙