Description: Lemma for lshpkrex . The value of tentative functional G is zero iff its argument belongs to hyperplane U . (Contributed by NM, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpkrlem.v | |
|
lshpkrlem.a | |
||
lshpkrlem.n | |
||
lshpkrlem.p | |
||
lshpkrlem.h | |
||
lshpkrlem.w | |
||
lshpkrlem.u | |
||
lshpkrlem.z | |
||
lshpkrlem.x | |
||
lshpkrlem.e | |
||
lshpkrlem.d | |
||
lshpkrlem.k | |
||
lshpkrlem.t | |
||
lshpkrlem.o | |
||
lshpkrlem.g | |
||
Assertion | lshpkrlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkrlem.v | |
|
2 | lshpkrlem.a | |
|
3 | lshpkrlem.n | |
|
4 | lshpkrlem.p | |
|
5 | lshpkrlem.h | |
|
6 | lshpkrlem.w | |
|
7 | lshpkrlem.u | |
|
8 | lshpkrlem.z | |
|
9 | lshpkrlem.x | |
|
10 | lshpkrlem.e | |
|
11 | lshpkrlem.d | |
|
12 | lshpkrlem.k | |
|
13 | lshpkrlem.t | |
|
14 | lshpkrlem.o | |
|
15 | lshpkrlem.g | |
|
16 | lveclmod | |
|
17 | 6 16 | syl | |
18 | 11 | lmodfgrp | |
19 | 12 14 | grpidcl | |
20 | 17 18 19 | 3syl | |
21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | lshpsmreu | |
22 | oveq1 | |
|
23 | 22 | oveq2d | |
24 | 23 | eqeq2d | |
25 | 24 | rexbidv | |
26 | 25 | riota2 | |
27 | 20 21 26 | syl2anc | |
28 | simpr | |
|
29 | eqidd | |
|
30 | eqeq2 | |
|
31 | 30 | rspcev | |
32 | 28 29 31 | syl2anc | |
33 | 32 | ex | |
34 | eleq1a | |
|
35 | 34 | a1i | |
36 | 35 | rexlimdv | |
37 | 33 36 | impbid | |
38 | eqid | |
|
39 | 1 11 13 14 38 | lmod0vs | |
40 | 17 8 39 | syl2anc | |
41 | 40 | adantr | |
42 | 41 | oveq2d | |
43 | 6 | adantr | |
44 | 43 16 | syl | |
45 | eqid | |
|
46 | 45 5 17 7 | lshplss | |
47 | 1 45 | lssel | |
48 | 46 47 | sylan | |
49 | 1 2 38 | lmod0vrid | |
50 | 44 48 49 | syl2anc | |
51 | 42 50 | eqtrd | |
52 | 51 | eqeq2d | |
53 | 52 | bicomd | |
54 | 53 | rexbidva | |
55 | 37 54 | bitrd | |
56 | eqeq1 | |
|
57 | 56 | rexbidv | |
58 | 57 | riotabidv | |
59 | riotaex | |
|
60 | 58 15 59 | fvmpt | |
61 | oveq1 | |
|
62 | 61 | eqeq2d | |
63 | 62 | cbvrexvw | |
64 | 63 | a1i | |
65 | 64 | riotabiia | |
66 | 60 65 | eqtrdi | |
67 | 9 66 | syl | |
68 | 67 | eqeq1d | |
69 | 27 55 68 | 3bitr4d | |