| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpkrlem.v |
|
| 2 |
|
lshpkrlem.a |
|
| 3 |
|
lshpkrlem.n |
|
| 4 |
|
lshpkrlem.p |
|
| 5 |
|
lshpkrlem.h |
|
| 6 |
|
lshpkrlem.w |
|
| 7 |
|
lshpkrlem.u |
|
| 8 |
|
lshpkrlem.z |
|
| 9 |
|
lshpkrlem.x |
|
| 10 |
|
lshpkrlem.e |
|
| 11 |
|
lshpkrlem.d |
|
| 12 |
|
lshpkrlem.k |
|
| 13 |
|
lshpkrlem.t |
|
| 14 |
|
lshpkrlem.o |
|
| 15 |
|
lshpkrlem.g |
|
| 16 |
|
lveclmod |
|
| 17 |
6 16
|
syl |
|
| 18 |
11
|
lmodfgrp |
|
| 19 |
12 14
|
grpidcl |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lshpsmreu |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
oveq2d |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
24
|
rexbidv |
|
| 26 |
25
|
riota2 |
|
| 27 |
20 21 26
|
syl2anc |
|
| 28 |
|
simpr |
|
| 29 |
|
eqidd |
|
| 30 |
|
eqeq2 |
|
| 31 |
30
|
rspcev |
|
| 32 |
28 29 31
|
syl2anc |
|
| 33 |
32
|
ex |
|
| 34 |
|
eleq1a |
|
| 35 |
34
|
a1i |
|
| 36 |
35
|
rexlimdv |
|
| 37 |
33 36
|
impbid |
|
| 38 |
|
eqid |
|
| 39 |
1 11 13 14 38
|
lmod0vs |
|
| 40 |
17 8 39
|
syl2anc |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
oveq2d |
|
| 43 |
6
|
adantr |
|
| 44 |
43 16
|
syl |
|
| 45 |
|
eqid |
|
| 46 |
45 5 17 7
|
lshplss |
|
| 47 |
1 45
|
lssel |
|
| 48 |
46 47
|
sylan |
|
| 49 |
1 2 38
|
lmod0vrid |
|
| 50 |
44 48 49
|
syl2anc |
|
| 51 |
42 50
|
eqtrd |
|
| 52 |
51
|
eqeq2d |
|
| 53 |
52
|
bicomd |
|
| 54 |
53
|
rexbidva |
|
| 55 |
37 54
|
bitrd |
|
| 56 |
|
eqeq1 |
|
| 57 |
56
|
rexbidv |
|
| 58 |
57
|
riotabidv |
|
| 59 |
|
riotaex |
|
| 60 |
58 15 59
|
fvmpt |
|
| 61 |
|
oveq1 |
|
| 62 |
61
|
eqeq2d |
|
| 63 |
62
|
cbvrexvw |
|
| 64 |
63
|
a1i |
|
| 65 |
64
|
riotabiia |
|
| 66 |
60 65
|
eqtrdi |
|
| 67 |
9 66
|
syl |
|
| 68 |
67
|
eqeq1d |
|
| 69 |
27 55 68
|
3bitr4d |
|