Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmcl.s | |
|
lsmcl.p | |
||
Assertion | lsmcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcl.s | |
|
2 | lsmcl.p | |
|
3 | lmodabl | |
|
4 | 3 | 3ad2ant1 | |
5 | 1 | lsssubg | |
6 | 5 | 3adant3 | |
7 | 1 | lsssubg | |
8 | 7 | 3adant2 | |
9 | 2 | lsmsubg2 | |
10 | 4 6 8 9 | syl3anc | |
11 | eqid | |
|
12 | 11 2 | lsmelval | |
13 | 6 8 12 | syl2anc | |
14 | 13 | adantr | |
15 | simpll1 | |
|
16 | simplr | |
|
17 | simpll2 | |
|
18 | simprl | |
|
19 | eqid | |
|
20 | 19 1 | lssel | |
21 | 17 18 20 | syl2anc | |
22 | simpll3 | |
|
23 | simprr | |
|
24 | 19 1 | lssel | |
25 | 22 23 24 | syl2anc | |
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 19 11 26 27 28 | lmodvsdi | |
30 | 15 16 21 25 29 | syl13anc | |
31 | 15 17 5 | syl2anc | |
32 | 15 22 7 | syl2anc | |
33 | 26 27 28 1 | lssvscl | |
34 | 15 17 16 18 33 | syl22anc | |
35 | 26 27 28 1 | lssvscl | |
36 | 15 22 16 23 35 | syl22anc | |
37 | 11 2 | lsmelvali | |
38 | 31 32 34 36 37 | syl22anc | |
39 | 30 38 | eqeltrd | |
40 | oveq2 | |
|
41 | 40 | eleq1d | |
42 | 39 41 | syl5ibrcom | |
43 | 42 | rexlimdvva | |
44 | 14 43 | sylbid | |
45 | 44 | impr | |
46 | 45 | ralrimivva | |
47 | 26 28 19 27 1 | islss4 | |
48 | 47 | 3ad2ant1 | |
49 | 10 46 48 | mpbir2and | |