| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcl.s |
|
| 2 |
|
lsmcl.p |
|
| 3 |
|
lmodabl |
|
| 4 |
3
|
3ad2ant1 |
|
| 5 |
1
|
lsssubg |
|
| 6 |
5
|
3adant3 |
|
| 7 |
1
|
lsssubg |
|
| 8 |
7
|
3adant2 |
|
| 9 |
2
|
lsmsubg2 |
|
| 10 |
4 6 8 9
|
syl3anc |
|
| 11 |
|
eqid |
|
| 12 |
11 2
|
lsmelval |
|
| 13 |
6 8 12
|
syl2anc |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpll1 |
|
| 16 |
|
simplr |
|
| 17 |
|
simpll2 |
|
| 18 |
|
simprl |
|
| 19 |
|
eqid |
|
| 20 |
19 1
|
lssel |
|
| 21 |
17 18 20
|
syl2anc |
|
| 22 |
|
simpll3 |
|
| 23 |
|
simprr |
|
| 24 |
19 1
|
lssel |
|
| 25 |
22 23 24
|
syl2anc |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
19 11 26 27 28
|
lmodvsdi |
|
| 30 |
15 16 21 25 29
|
syl13anc |
|
| 31 |
15 17 5
|
syl2anc |
|
| 32 |
15 22 7
|
syl2anc |
|
| 33 |
26 27 28 1
|
lssvscl |
|
| 34 |
15 17 16 18 33
|
syl22anc |
|
| 35 |
26 27 28 1
|
lssvscl |
|
| 36 |
15 22 16 23 35
|
syl22anc |
|
| 37 |
11 2
|
lsmelvali |
|
| 38 |
31 32 34 36 37
|
syl22anc |
|
| 39 |
30 38
|
eqeltrd |
|
| 40 |
|
oveq2 |
|
| 41 |
40
|
eleq1d |
|
| 42 |
39 41
|
syl5ibrcom |
|
| 43 |
42
|
rexlimdvva |
|
| 44 |
14 43
|
sylbid |
|
| 45 |
44
|
impr |
|
| 46 |
45
|
ralrimivva |
|
| 47 |
26 28 19 27 1
|
islss4 |
|
| 48 |
47
|
3ad2ant1 |
|
| 49 |
10 46 48
|
mpbir2and |
|