Metamath Proof Explorer


Theorem lsmcss

Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses lsmcss.c C=ClSubSpW
lsmcss.j V=BaseW
lsmcss.o ˙=ocvW
lsmcss.p ˙=LSSumW
lsmcss.1 φWPreHil
lsmcss.2 φSV
lsmcss.3 φ˙˙SS˙˙S
Assertion lsmcss φSC

Proof

Step Hyp Ref Expression
1 lsmcss.c C=ClSubSpW
2 lsmcss.j V=BaseW
3 lsmcss.o ˙=ocvW
4 lsmcss.p ˙=LSSumW
5 lsmcss.1 φWPreHil
6 lsmcss.2 φSV
7 lsmcss.3 φ˙˙SS˙˙S
8 7 sseld φx˙˙SxS˙˙S
9 phllmod WPreHilWLMod
10 5 9 syl φWLMod
11 2 3 ocvss ˙SV
12 11 a1i φ˙SV
13 eqid +W=+W
14 2 13 4 lsmelvalx WLModSV˙SVxS˙˙SySz˙Sx=y+Wz
15 10 6 12 14 syl3anc φxS˙˙SySz˙Sx=y+Wz
16 8 15 sylibd φx˙˙SySz˙Sx=y+Wz
17 5 ad2antrr φySz˙Sy+Wz˙˙SWPreHil
18 6 ad2antrr φySz˙Sy+Wz˙˙SSV
19 simplrl φySz˙Sy+Wz˙˙SyS
20 18 19 sseldd φySz˙Sy+Wz˙˙SyV
21 simplrr φySz˙Sy+Wz˙˙Sz˙S
22 11 21 sselid φySz˙Sy+Wz˙˙SzV
23 eqid ScalarW=ScalarW
24 eqid 𝑖W=𝑖W
25 eqid +ScalarW=+ScalarW
26 23 24 2 13 25 ipdir WPreHilyVzVzVy+Wz𝑖Wz=y𝑖Wz+ScalarWz𝑖Wz
27 17 20 22 22 26 syl13anc φySz˙Sy+Wz˙˙Sy+Wz𝑖Wz=y𝑖Wz+ScalarWz𝑖Wz
28 eqid 0ScalarW=0ScalarW
29 2 24 23 28 3 ocvi z˙SySz𝑖Wy=0ScalarW
30 21 19 29 syl2anc φySz˙Sy+Wz˙˙Sz𝑖Wy=0ScalarW
31 23 24 2 28 iporthcom WPreHilzVyVz𝑖Wy=0ScalarWy𝑖Wz=0ScalarW
32 17 22 20 31 syl3anc φySz˙Sy+Wz˙˙Sz𝑖Wy=0ScalarWy𝑖Wz=0ScalarW
33 30 32 mpbid φySz˙Sy+Wz˙˙Sy𝑖Wz=0ScalarW
34 33 oveq1d φySz˙Sy+Wz˙˙Sy𝑖Wz+ScalarWz𝑖Wz=0ScalarW+ScalarWz𝑖Wz
35 17 9 syl φySz˙Sy+Wz˙˙SWLMod
36 23 lmodfgrp WLModScalarWGrp
37 35 36 syl φySz˙Sy+Wz˙˙SScalarWGrp
38 eqid BaseScalarW=BaseScalarW
39 23 24 2 38 ipcl WPreHilzVzVz𝑖WzBaseScalarW
40 17 22 22 39 syl3anc φySz˙Sy+Wz˙˙Sz𝑖WzBaseScalarW
41 38 25 28 grplid ScalarWGrpz𝑖WzBaseScalarW0ScalarW+ScalarWz𝑖Wz=z𝑖Wz
42 37 40 41 syl2anc φySz˙Sy+Wz˙˙S0ScalarW+ScalarWz𝑖Wz=z𝑖Wz
43 27 34 42 3eqtrd φySz˙Sy+Wz˙˙Sy+Wz𝑖Wz=z𝑖Wz
44 simpr φySz˙Sy+Wz˙˙Sy+Wz˙˙S
45 2 24 23 28 3 ocvi y+Wz˙˙Sz˙Sy+Wz𝑖Wz=0ScalarW
46 44 21 45 syl2anc φySz˙Sy+Wz˙˙Sy+Wz𝑖Wz=0ScalarW
47 43 46 eqtr3d φySz˙Sy+Wz˙˙Sz𝑖Wz=0ScalarW
48 eqid 0W=0W
49 23 24 2 28 48 ipeq0 WPreHilzVz𝑖Wz=0ScalarWz=0W
50 17 22 49 syl2anc φySz˙Sy+Wz˙˙Sz𝑖Wz=0ScalarWz=0W
51 47 50 mpbid φySz˙Sy+Wz˙˙Sz=0W
52 51 oveq2d φySz˙Sy+Wz˙˙Sy+Wz=y+W0W
53 lmodgrp WLModWGrp
54 10 53 syl φWGrp
55 54 ad2antrr φySz˙Sy+Wz˙˙SWGrp
56 2 13 48 grprid WGrpyVy+W0W=y
57 55 20 56 syl2anc φySz˙Sy+Wz˙˙Sy+W0W=y
58 52 57 eqtrd φySz˙Sy+Wz˙˙Sy+Wz=y
59 58 19 eqeltrd φySz˙Sy+Wz˙˙Sy+WzS
60 59 ex φySz˙Sy+Wz˙˙Sy+WzS
61 eleq1 x=y+Wzx˙˙Sy+Wz˙˙S
62 eleq1 x=y+WzxSy+WzS
63 61 62 imbi12d x=y+Wzx˙˙SxSy+Wz˙˙Sy+WzS
64 60 63 syl5ibrcom φySz˙Sx=y+Wzx˙˙SxS
65 64 rexlimdvva φySz˙Sx=y+Wzx˙˙SxS
66 16 65 syld φx˙˙Sx˙˙SxS
67 66 pm2.43d φx˙˙SxS
68 67 ssrdv φ˙˙SS
69 2 1 3 iscss2 WPreHilSVSC˙˙SS
70 5 6 69 syl2anc φSC˙˙SS
71 68 70 mpbird φSC