Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltbval.c | |
|
ltbval.d | |
||
ltbval.i | |
||
ltbval.t | |
||
ltbwe.w | |
||
Assertion | ltbwe | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltbval.c | |
|
2 | ltbval.d | |
|
3 | ltbval.i | |
|
4 | ltbval.t | |
|
5 | ltbwe.w | |
|
6 | eqid | |
|
7 | breq1 | |
|
8 | 7 | cbvrabv | |
9 | nn0uz | |
|
10 | ltweuz | |
|
11 | weeq2 | |
|
12 | 10 11 | mpbiri | |
13 | 9 12 | mp1i | |
14 | 0nn0 | |
|
15 | ne0i | |
|
16 | 14 15 | mp1i | |
17 | eqid | |
|
18 | 0z | |
|
19 | hashgval2 | |
|
20 | 18 19 | om2uzoi | |
21 | oieq2 | |
|
22 | 9 21 | ax-mp | |
23 | 20 22 | eqtr4i | |
24 | peano1 | |
|
25 | fvres | |
|
26 | 24 25 | ax-mp | |
27 | hash0 | |
|
28 | 26 27 | eqtr2i | |
29 | 6 8 5 13 16 17 23 28 | wemapwe | |
30 | elmapfun | |
|
31 | 30 | adantl | |
32 | simpr | |
|
33 | c0ex | |
|
34 | 33 | a1i | |
35 | funisfsupp | |
|
36 | 31 32 34 35 | syl3anc | |
37 | elmapi | |
|
38 | fcdmnn0supp | |
|
39 | 38 | eleq1d | |
40 | 3 37 39 | syl2an | |
41 | 36 40 | bitr2d | |
42 | 41 | rabbidva | |
43 | 2 42 | eqtrid | |
44 | weeq2 | |
|
45 | 43 44 | syl | |
46 | 29 45 | mpbird | |
47 | weinxp | |
|
48 | 46 47 | sylib | |
49 | 1 2 3 4 | ltbval | |
50 | df-xp | |
|
51 | vex | |
|
52 | vex | |
|
53 | 51 52 | prss | |
54 | 53 | opabbii | |
55 | 50 54 | eqtr2i | |
56 | 55 | ineq1i | |
57 | inopab | |
|
58 | incom | |
|
59 | 56 57 58 | 3eqtr3i | |
60 | 49 59 | eqtrdi | |
61 | weeq1 | |
|
62 | 60 61 | syl | |
63 | 48 62 | mpbird | |