Metamath Proof Explorer


Theorem ltbwe

Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015)

Ref Expression
Hypotheses ltbval.c C=T<bagI
ltbval.d D=h0I|h-1Fin
ltbval.i φIV
ltbval.t φTW
ltbwe.w φTWeI
Assertion ltbwe φCWeD

Proof

Step Hyp Ref Expression
1 ltbval.c C=T<bagI
2 ltbval.d D=h0I|h-1Fin
3 ltbval.i φIV
4 ltbval.t φTW
5 ltbwe.w φTWeI
6 eqid xy|zIxz<yzwIzTwxw=yw=xy|zIxz<yzwIzTwxw=yw
7 breq1 h=xfinSupp0hfinSupp0x
8 7 cbvrabv h0I|finSupp0h=x0I|finSupp0x
9 nn0uz 0=0
10 ltweuz <We0
11 weeq2 0=0<We0<We0
12 10 11 mpbiri 0=0<We0
13 9 12 mp1i φ<We0
14 0nn0 00
15 ne0i 000
16 14 15 mp1i φ0
17 eqid OrdIsoTI=OrdIsoTI
18 0z 0
19 hashgval2 .ω=recxVx+10ω
20 18 19 om2uzoi .ω=OrdIso<0
21 oieq2 0=0OrdIso<0=OrdIso<0
22 9 21 ax-mp OrdIso<0=OrdIso<0
23 20 22 eqtr4i .ω=OrdIso<0
24 peano1 ω
25 fvres ω.ω=
26 24 25 ax-mp .ω=
27 hash0 =0
28 26 27 eqtr2i 0=.ω
29 6 8 5 13 16 17 23 28 wemapwe φxy|zIxz<yzwIzTwxw=ywWeh0I|finSupp0h
30 elmapfun h0IFunh
31 30 adantl φh0IFunh
32 simpr φh0Ih0I
33 c0ex 0V
34 33 a1i φh0I0V
35 funisfsupp Funhh0I0VfinSupp0hhsupp0Fin
36 31 32 34 35 syl3anc φh0IfinSupp0hhsupp0Fin
37 elmapi h0Ih:I0
38 fcdmnn0supp IVh:I0hsupp0=h-1
39 38 eleq1d IVh:I0hsupp0Finh-1Fin
40 3 37 39 syl2an φh0Ihsupp0Finh-1Fin
41 36 40 bitr2d φh0Ih-1FinfinSupp0h
42 41 rabbidva φh0I|h-1Fin=h0I|finSupp0h
43 2 42 eqtrid φD=h0I|finSupp0h
44 weeq2 D=h0I|finSupp0hxy|zIxz<yzwIzTwxw=ywWeDxy|zIxz<yzwIzTwxw=ywWeh0I|finSupp0h
45 43 44 syl φxy|zIxz<yzwIzTwxw=ywWeDxy|zIxz<yzwIzTwxw=ywWeh0I|finSupp0h
46 29 45 mpbird φxy|zIxz<yzwIzTwxw=ywWeD
47 weinxp xy|zIxz<yzwIzTwxw=ywWeDxy|zIxz<yzwIzTwxw=ywD×DWeD
48 46 47 sylib φxy|zIxz<yzwIzTwxw=ywD×DWeD
49 1 2 3 4 ltbval φC=xy|xyDzIxz<yzwIzTwxw=yw
50 df-xp D×D=xy|xDyD
51 vex xV
52 vex yV
53 51 52 prss xDyDxyD
54 53 opabbii xy|xDyD=xy|xyD
55 50 54 eqtr2i xy|xyD=D×D
56 55 ineq1i xy|xyDxy|zIxz<yzwIzTwxw=yw=D×Dxy|zIxz<yzwIzTwxw=yw
57 inopab xy|xyDxy|zIxz<yzwIzTwxw=yw=xy|xyDzIxz<yzwIzTwxw=yw
58 incom D×Dxy|zIxz<yzwIzTwxw=yw=xy|zIxz<yzwIzTwxw=ywD×D
59 56 57 58 3eqtr3i xy|xyDzIxz<yzwIzTwxw=yw=xy|zIxz<yzwIzTwxw=ywD×D
60 49 59 eqtrdi φC=xy|zIxz<yzwIzTwxw=ywD×D
61 weeq1 C=xy|zIxz<yzwIzTwxw=ywD×DCWeDxy|zIxz<yzwIzTwxw=ywD×DWeD
62 60 61 syl φCWeDxy|zIxz<yzwIzTwxw=ywD×DWeD
63 48 62 mpbird φCWeD