Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 6-Apr-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ltexprlem.1 | |
|
Assertion | ltexprlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltexprlem.1 | |
|
2 | prnmax | |
|
3 | df-rex | |
|
4 | 2 3 | sylib | |
5 | ltrelnq | |
|
6 | 5 | brel | |
7 | 6 | simpld | |
8 | addnqf | |
|
9 | 8 | fdmi | |
10 | 0nnq | |
|
11 | 9 10 | ndmovrcl | |
12 | 7 11 | syl | |
13 | ltaddnq | |
|
14 | ltsonq | |
|
15 | 14 5 | sotri | |
16 | 13 15 | sylan | |
17 | 12 16 | mpancom | |
18 | 5 | brel | |
19 | 18 | simprd | |
20 | ltexnq | |
|
21 | 20 | biimpd | |
22 | 19 21 | mpcom | |
23 | 17 22 | syl | |
24 | eqcom | |
|
25 | 24 | exbii | |
26 | 23 25 | sylibr | |
27 | 26 | ancri | |
28 | 27 | anim2i | |
29 | an12 | |
|
30 | 28 29 | sylibr | |
31 | 19.41v | |
|
32 | 30 31 | sylibr | |
33 | 32 | eximi | |
34 | excom | |
|
35 | 33 34 | sylibr | |
36 | ovex | |
|
37 | eleq1 | |
|
38 | breq2 | |
|
39 | 37 38 | anbi12d | |
40 | 36 39 | ceqsexv | |
41 | ltanq | |
|
42 | 9 5 10 41 | ndmovordi | |
43 | 42 | anim2i | |
44 | 40 43 | sylbi | |
45 | 44 | eximi | |
46 | 4 35 45 | 3syl | |
47 | 46 | anim2i | |
48 | 47 | an12s | |
49 | 19.42v | |
|
50 | 48 49 | sylibr | |
51 | 50 | ex | |
52 | 51 | eximdv | |
53 | 1 | eqabri | |
54 | vex | |
|
55 | oveq2 | |
|
56 | 55 | eleq1d | |
57 | 56 | anbi2d | |
58 | 57 | exbidv | |
59 | 54 58 1 | elab2 | |
60 | 59 | anbi1i | |
61 | 19.41v | |
|
62 | anass | |
|
63 | 62 | exbii | |
64 | 60 61 63 | 3bitr2i | |
65 | 64 | exbii | |
66 | excom | |
|
67 | 65 66 | bitr4i | |
68 | 52 53 67 | 3imtr4g | |