Metamath Proof Explorer


Theorem ltexprlem4

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 6-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 C=x|y¬yAy+𝑸xB
Assertion ltexprlem4 B𝑷xCzzCx<𝑸z

Proof

Step Hyp Ref Expression
1 ltexprlem.1 C=x|y¬yAy+𝑸xB
2 prnmax B𝑷y+𝑸xBwBy+𝑸x<𝑸w
3 df-rex wBy+𝑸x<𝑸wwwBy+𝑸x<𝑸w
4 2 3 sylib B𝑷y+𝑸xBwwBy+𝑸x<𝑸w
5 ltrelnq <𝑸𝑸×𝑸
6 5 brel y+𝑸x<𝑸wy+𝑸x𝑸w𝑸
7 6 simpld y+𝑸x<𝑸wy+𝑸x𝑸
8 addnqf +𝑸:𝑸×𝑸𝑸
9 8 fdmi dom+𝑸=𝑸×𝑸
10 0nnq ¬𝑸
11 9 10 ndmovrcl y+𝑸x𝑸y𝑸x𝑸
12 7 11 syl y+𝑸x<𝑸wy𝑸x𝑸
13 ltaddnq y𝑸x𝑸y<𝑸y+𝑸x
14 ltsonq <𝑸Or𝑸
15 14 5 sotri y<𝑸y+𝑸xy+𝑸x<𝑸wy<𝑸w
16 13 15 sylan y𝑸x𝑸y+𝑸x<𝑸wy<𝑸w
17 12 16 mpancom y+𝑸x<𝑸wy<𝑸w
18 5 brel y<𝑸wy𝑸w𝑸
19 18 simprd y<𝑸ww𝑸
20 ltexnq w𝑸y<𝑸wzy+𝑸z=w
21 20 biimpd w𝑸y<𝑸wzy+𝑸z=w
22 19 21 mpcom y<𝑸wzy+𝑸z=w
23 17 22 syl y+𝑸x<𝑸wzy+𝑸z=w
24 eqcom w=y+𝑸zy+𝑸z=w
25 24 exbii zw=y+𝑸zzy+𝑸z=w
26 23 25 sylibr y+𝑸x<𝑸wzw=y+𝑸z
27 26 ancri y+𝑸x<𝑸wzw=y+𝑸zy+𝑸x<𝑸w
28 27 anim2i wBy+𝑸x<𝑸wwBzw=y+𝑸zy+𝑸x<𝑸w
29 an12 zw=y+𝑸zwBy+𝑸x<𝑸wwBzw=y+𝑸zy+𝑸x<𝑸w
30 28 29 sylibr wBy+𝑸x<𝑸wzw=y+𝑸zwBy+𝑸x<𝑸w
31 19.41v zw=y+𝑸zwBy+𝑸x<𝑸wzw=y+𝑸zwBy+𝑸x<𝑸w
32 30 31 sylibr wBy+𝑸x<𝑸wzw=y+𝑸zwBy+𝑸x<𝑸w
33 32 eximi wwBy+𝑸x<𝑸wwzw=y+𝑸zwBy+𝑸x<𝑸w
34 excom zww=y+𝑸zwBy+𝑸x<𝑸wwzw=y+𝑸zwBy+𝑸x<𝑸w
35 33 34 sylibr wwBy+𝑸x<𝑸wzww=y+𝑸zwBy+𝑸x<𝑸w
36 ovex y+𝑸zV
37 eleq1 w=y+𝑸zwBy+𝑸zB
38 breq2 w=y+𝑸zy+𝑸x<𝑸wy+𝑸x<𝑸y+𝑸z
39 37 38 anbi12d w=y+𝑸zwBy+𝑸x<𝑸wy+𝑸zBy+𝑸x<𝑸y+𝑸z
40 36 39 ceqsexv ww=y+𝑸zwBy+𝑸x<𝑸wy+𝑸zBy+𝑸x<𝑸y+𝑸z
41 ltanq y𝑸x<𝑸zy+𝑸x<𝑸y+𝑸z
42 9 5 10 41 ndmovordi y+𝑸x<𝑸y+𝑸zx<𝑸z
43 42 anim2i y+𝑸zBy+𝑸x<𝑸y+𝑸zy+𝑸zBx<𝑸z
44 40 43 sylbi ww=y+𝑸zwBy+𝑸x<𝑸wy+𝑸zBx<𝑸z
45 44 eximi zww=y+𝑸zwBy+𝑸x<𝑸wzy+𝑸zBx<𝑸z
46 4 35 45 3syl B𝑷y+𝑸xBzy+𝑸zBx<𝑸z
47 46 anim2i ¬yAB𝑷y+𝑸xB¬yAzy+𝑸zBx<𝑸z
48 47 an12s B𝑷¬yAy+𝑸xB¬yAzy+𝑸zBx<𝑸z
49 19.42v z¬yAy+𝑸zBx<𝑸z¬yAzy+𝑸zBx<𝑸z
50 48 49 sylibr B𝑷¬yAy+𝑸xBz¬yAy+𝑸zBx<𝑸z
51 50 ex B𝑷¬yAy+𝑸xBz¬yAy+𝑸zBx<𝑸z
52 51 eximdv B𝑷y¬yAy+𝑸xByz¬yAy+𝑸zBx<𝑸z
53 1 eqabri xCy¬yAy+𝑸xB
54 vex zV
55 oveq2 x=zy+𝑸x=y+𝑸z
56 55 eleq1d x=zy+𝑸xBy+𝑸zB
57 56 anbi2d x=z¬yAy+𝑸xB¬yAy+𝑸zB
58 57 exbidv x=zy¬yAy+𝑸xBy¬yAy+𝑸zB
59 54 58 1 elab2 zCy¬yAy+𝑸zB
60 59 anbi1i zCx<𝑸zy¬yAy+𝑸zBx<𝑸z
61 19.41v y¬yAy+𝑸zBx<𝑸zy¬yAy+𝑸zBx<𝑸z
62 anass ¬yAy+𝑸zBx<𝑸z¬yAy+𝑸zBx<𝑸z
63 62 exbii y¬yAy+𝑸zBx<𝑸zy¬yAy+𝑸zBx<𝑸z
64 60 61 63 3bitr2i zCx<𝑸zy¬yAy+𝑸zBx<𝑸z
65 64 exbii zzCx<𝑸zzy¬yAy+𝑸zBx<𝑸z
66 excom yz¬yAy+𝑸zBx<𝑸zzy¬yAy+𝑸zBx<𝑸z
67 65 66 bitr4i zzCx<𝑸zyz¬yAy+𝑸zBx<𝑸z
68 52 53 67 3imtr4g B𝑷xCzzCx<𝑸z