Metamath Proof Explorer


Theorem mbfmul

Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbfmul.1 φFMblFn
mbfmul.2 φGMblFn
Assertion mbfmul φF×fGMblFn

Proof

Step Hyp Ref Expression
1 mbfmul.1 φFMblFn
2 mbfmul.2 φGMblFn
3 mbff FMblFnF:domF
4 1 3 syl φF:domF
5 4 ffnd φFFndomF
6 mbff GMblFnG:domG
7 2 6 syl φG:domG
8 7 ffnd φGFndomG
9 mbfdm FMblFndomFdomvol
10 1 9 syl φdomFdomvol
11 mbfdm GMblFndomGdomvol
12 2 11 syl φdomGdomvol
13 eqid domFdomG=domFdomG
14 eqidd φxdomFFx=Fx
15 eqidd φxdomGGx=Gx
16 5 8 10 12 13 14 15 offval φF×fG=xdomFdomGFxGx
17 elinel1 xdomFdomGxdomF
18 ffvelcdm F:domFxdomFFx
19 4 17 18 syl2an φxdomFdomGFx
20 elinel2 xdomFdomGxdomG
21 ffvelcdm G:domGxdomGGx
22 7 20 21 syl2an φxdomFdomGGx
23 19 22 remuld φxdomFdomGFxGx=FxGxFxGx
24 23 mpteq2dva φxdomFdomGFxGx=xdomFdomGFxGxFxGx
25 inmbl domFdomvoldomGdomvoldomFdomGdomvol
26 10 12 25 syl2anc φdomFdomGdomvol
27 ovexd φxdomFdomGFxGxV
28 ovexd φxdomFdomGFxGxV
29 19 recld φxdomFdomGFx
30 22 recld φxdomFdomGGx
31 eqidd φxdomFdomGFx=xdomFdomGFx
32 eqidd φxdomFdomGGx=xdomFdomGGx
33 26 29 30 31 32 offval2 φxdomFdomGFx×fxdomFdomGGx=xdomFdomGFxGx
34 19 imcld φxdomFdomGFx
35 22 imcld φxdomFdomGGx
36 eqidd φxdomFdomGFx=xdomFdomGFx
37 eqidd φxdomFdomGGx=xdomFdomGGx
38 26 34 35 36 37 offval2 φxdomFdomGFx×fxdomFdomGGx=xdomFdomGFxGx
39 26 27 28 33 38 offval2 φxdomFdomGFx×fxdomFdomGGxfxdomFdomGFx×fxdomFdomGGx=xdomFdomGFxGxFxGx
40 24 39 eqtr4d φxdomFdomGFxGx=xdomFdomGFx×fxdomFdomGGxfxdomFdomGFx×fxdomFdomGGx
41 inss1 domFdomGdomF
42 resmpt domFdomGdomFxdomFFxdomFdomG=xdomFdomGFx
43 41 42 ax-mp xdomFFxdomFdomG=xdomFdomGFx
44 4 feqmptd φF=xdomFFx
45 44 1 eqeltrrd φxdomFFxMblFn
46 mbfres xdomFFxMblFndomFdomGdomvolxdomFFxdomFdomGMblFn
47 45 26 46 syl2anc φxdomFFxdomFdomGMblFn
48 43 47 eqeltrrid φxdomFdomGFxMblFn
49 19 ismbfcn2 φxdomFdomGFxMblFnxdomFdomGFxMblFnxdomFdomGFxMblFn
50 48 49 mpbid φxdomFdomGFxMblFnxdomFdomGFxMblFn
51 50 simpld φxdomFdomGFxMblFn
52 inss2 domFdomGdomG
53 resmpt domFdomGdomGxdomGGxdomFdomG=xdomFdomGGx
54 52 53 ax-mp xdomGGxdomFdomG=xdomFdomGGx
55 7 feqmptd φG=xdomGGx
56 55 2 eqeltrrd φxdomGGxMblFn
57 mbfres xdomGGxMblFndomFdomGdomvolxdomGGxdomFdomGMblFn
58 56 26 57 syl2anc φxdomGGxdomFdomGMblFn
59 54 58 eqeltrrid φxdomFdomGGxMblFn
60 22 ismbfcn2 φxdomFdomGGxMblFnxdomFdomGGxMblFnxdomFdomGGxMblFn
61 59 60 mpbid φxdomFdomGGxMblFnxdomFdomGGxMblFn
62 61 simpld φxdomFdomGGxMblFn
63 29 fmpttd φxdomFdomGFx:domFdomG
64 30 fmpttd φxdomFdomGGx:domFdomG
65 51 62 63 64 mbfmullem φxdomFdomGFx×fxdomFdomGGxMblFn
66 50 simprd φxdomFdomGFxMblFn
67 61 simprd φxdomFdomGGxMblFn
68 34 fmpttd φxdomFdomGFx:domFdomG
69 35 fmpttd φxdomFdomGGx:domFdomG
70 66 67 68 69 mbfmullem φxdomFdomGFx×fxdomFdomGGxMblFn
71 65 70 mbfsub φxdomFdomGFx×fxdomFdomGGxfxdomFdomGFx×fxdomFdomGGxMblFn
72 40 71 eqeltrd φxdomFdomGFxGxMblFn
73 19 22 immuld φxdomFdomGFxGx=FxGx+FxGx
74 73 mpteq2dva φxdomFdomGFxGx=xdomFdomGFxGx+FxGx
75 ovexd φxdomFdomGFxGxV
76 ovexd φxdomFdomGFxGxV
77 26 29 35 31 37 offval2 φxdomFdomGFx×fxdomFdomGGx=xdomFdomGFxGx
78 26 34 30 36 32 offval2 φxdomFdomGFx×fxdomFdomGGx=xdomFdomGFxGx
79 26 75 76 77 78 offval2 φxdomFdomGFx×fxdomFdomGGx+fxdomFdomGFx×fxdomFdomGGx=xdomFdomGFxGx+FxGx
80 74 79 eqtr4d φxdomFdomGFxGx=xdomFdomGFx×fxdomFdomGGx+fxdomFdomGFx×fxdomFdomGGx
81 51 67 63 69 mbfmullem φxdomFdomGFx×fxdomFdomGGxMblFn
82 66 62 68 64 mbfmullem φxdomFdomGFx×fxdomFdomGGxMblFn
83 81 82 mbfadd φxdomFdomGFx×fxdomFdomGGx+fxdomFdomGFx×fxdomFdomGGxMblFn
84 80 83 eqeltrd φxdomFdomGFxGxMblFn
85 19 22 mulcld φxdomFdomGFxGx
86 85 ismbfcn2 φxdomFdomGFxGxMblFnxdomFdomGFxGxMblFnxdomFdomGFxGxMblFn
87 72 84 86 mpbir2and φxdomFdomGFxGxMblFn
88 16 87 eqeltrd φF×fGMblFn