Description: Lemma for mclsssv . (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mclsval.d | |
|
mclsval.e | |
||
mclsval.c | |
||
mclsval.1 | |
||
mclsval.2 | |
||
mclsval.3 | |
||
mclsval.h | |
||
mclsval.a | |
||
mclsval.s | |
||
mclsval.v | |
||
Assertion | mclsssvlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | |
|
2 | mclsval.e | |
|
3 | mclsval.c | |
|
4 | mclsval.1 | |
|
5 | mclsval.2 | |
|
6 | mclsval.3 | |
|
7 | mclsval.h | |
|
8 | mclsval.a | |
|
9 | mclsval.s | |
|
10 | mclsval.v | |
|
11 | eqid | |
|
12 | 11 2 7 | mvhf | |
13 | 4 12 | syl | |
14 | 13 | frnd | |
15 | 6 14 | unssd | |
16 | 9 2 | msubf | |
17 | eqid | |
|
18 | 8 17 | maxsta | |
19 | 4 18 | syl | |
20 | eqid | |
|
21 | 20 17 | mstapst | |
22 | 19 21 | sstrdi | |
23 | 22 | sselda | |
24 | 1 2 20 | elmpst | |
25 | 24 | simp3bi | |
26 | 23 25 | syl | |
27 | ffvelcdm | |
|
28 | 16 26 27 | syl2anr | |
29 | 28 | a1d | |
30 | 29 | ralrimiva | |
31 | 30 | ex | |
32 | 31 | alrimiv | |
33 | 32 | alrimivv | |
34 | 2 | fvexi | |
35 | sseq2 | |
|
36 | sseq2 | |
|
37 | 36 | anbi1d | |
38 | eleq2 | |
|
39 | 37 38 | imbi12d | |
40 | 39 | ralbidv | |
41 | 40 | imbi2d | |
42 | 41 | albidv | |
43 | 42 | 2albidv | |
44 | 35 43 | anbi12d | |
45 | 34 44 | elab | |
46 | 15 33 45 | sylanbrc | |
47 | intss1 | |
|
48 | 46 47 | syl | |