Metamath Proof Explorer


Theorem mclsssvlem

Description: Lemma for mclsssv . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D=mDVT
mclsval.e E=mExT
mclsval.c C=mClsT
mclsval.1 φTmFS
mclsval.2 φKD
mclsval.3 φBE
mclsval.h H=mVHT
mclsval.a A=mAxT
mclsval.s S=mSubstT
mclsval.v V=mVarsT
Assertion mclsssvlem φc|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcE

Proof

Step Hyp Ref Expression
1 mclsval.d D=mDVT
2 mclsval.e E=mExT
3 mclsval.c C=mClsT
4 mclsval.1 φTmFS
5 mclsval.2 φKD
6 mclsval.3 φBE
7 mclsval.h H=mVHT
8 mclsval.a A=mAxT
9 mclsval.s S=mSubstT
10 mclsval.v V=mVarsT
11 eqid mVRT=mVRT
12 11 2 7 mvhf TmFSH:mVRTE
13 4 12 syl φH:mVRTE
14 13 frnd φranHE
15 6 14 unssd φBranHE
16 9 2 msubf sranSs:EE
17 eqid mStatT=mStatT
18 8 17 maxsta TmFSAmStatT
19 4 18 syl φAmStatT
20 eqid mPreStT=mPreStT
21 20 17 mstapst mStatTmPreStT
22 19 21 sstrdi φAmPreStT
23 22 sselda φmopAmopmPreStT
24 1 2 20 elmpst mopmPreStTmDm-1=moEoFinpE
25 24 simp3bi mopmPreStTpE
26 23 25 syl φmopApE
27 ffvelcdm s:EEpEspE
28 16 26 27 syl2anr φmopAsranSspE
29 28 a1d φmopAsranSsoranHExyxmyVsHx×VsHyKspE
30 29 ralrimiva φmopAsranSsoranHExyxmyVsHx×VsHyKspE
31 30 ex φmopAsranSsoranHExyxmyVsHx×VsHyKspE
32 31 alrimiv φpmopAsranSsoranHExyxmyVsHx×VsHyKspE
33 32 alrimivv φmopmopAsranSsoranHExyxmyVsHx×VsHyKspE
34 2 fvexi EV
35 sseq2 c=EBranHcBranHE
36 sseq2 c=EsoranHcsoranHE
37 36 anbi1d c=EsoranHcxyxmyVsHx×VsHyKsoranHExyxmyVsHx×VsHyK
38 eleq2 c=EspcspE
39 37 38 imbi12d c=EsoranHcxyxmyVsHx×VsHyKspcsoranHExyxmyVsHx×VsHyKspE
40 39 ralbidv c=EsranSsoranHcxyxmyVsHx×VsHyKspcsranSsoranHExyxmyVsHx×VsHyKspE
41 40 imbi2d c=EmopAsranSsoranHcxyxmyVsHx×VsHyKspcmopAsranSsoranHExyxmyVsHx×VsHyKspE
42 41 albidv c=EpmopAsranSsoranHcxyxmyVsHx×VsHyKspcpmopAsranSsoranHExyxmyVsHx×VsHyKspE
43 42 2albidv c=EmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcmopmopAsranSsoranHExyxmyVsHx×VsHyKspE
44 35 43 anbi12d c=EBranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcBranHEmopmopAsranSsoranHExyxmyVsHx×VsHyKspE
45 34 44 elab Ec|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcBranHEmopmopAsranSsoranHExyxmyVsHx×VsHyKspE
46 15 33 45 sylanbrc φEc|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspc
47 intss1 Ec|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcc|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcE
48 46 47 syl φc|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcE