| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metcn.2 |
|
| 2 |
|
metcn.4 |
|
| 3 |
1
|
mopntopon |
|
| 4 |
3
|
3ad2ant1 |
|
| 5 |
2
|
mopnval |
|
| 6 |
5
|
3ad2ant2 |
|
| 7 |
2
|
mopntopon |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
|
simp3 |
|
| 10 |
4 6 8 9
|
tgcnp |
|
| 11 |
|
simpll2 |
|
| 12 |
|
simplr |
|
| 13 |
|
simpll3 |
|
| 14 |
12 13
|
ffvelcdmd |
|
| 15 |
|
simpr |
|
| 16 |
|
blcntr |
|
| 17 |
11 14 15 16
|
syl3anc |
|
| 18 |
|
rpxr |
|
| 19 |
18
|
adantl |
|
| 20 |
|
blelrn |
|
| 21 |
11 14 19 20
|
syl3anc |
|
| 22 |
|
eleq2 |
|
| 23 |
|
sseq2 |
|
| 24 |
23
|
anbi2d |
|
| 25 |
24
|
rexbidv |
|
| 26 |
22 25
|
imbi12d |
|
| 27 |
26
|
rspcv |
|
| 28 |
21 27
|
syl |
|
| 29 |
17 28
|
mpid |
|
| 30 |
|
simpl1 |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
|
simplrr |
|
| 33 |
|
simpr |
|
| 34 |
1
|
mopni2 |
|
| 35 |
31 32 33 34
|
syl3anc |
|
| 36 |
|
sstr2 |
|
| 37 |
|
imass2 |
|
| 38 |
36 37
|
syl11 |
|
| 39 |
38
|
reximdv |
|
| 40 |
35 39
|
syl5com |
|
| 41 |
40
|
expimpd |
|
| 42 |
41
|
expr |
|
| 43 |
42
|
rexlimdv |
|
| 44 |
29 43
|
syld |
|
| 45 |
44
|
ralrimdva |
|
| 46 |
|
simpl2 |
|
| 47 |
|
blss |
|
| 48 |
47
|
3expib |
|
| 49 |
46 48
|
syl |
|
| 50 |
|
r19.29r |
|
| 51 |
30
|
ad3antrrr |
|
| 52 |
13
|
ad2antrr |
|
| 53 |
|
rpxr |
|
| 54 |
53
|
ad2antrl |
|
| 55 |
1
|
blopn |
|
| 56 |
51 52 54 55
|
syl3anc |
|
| 57 |
|
simprl |
|
| 58 |
|
blcntr |
|
| 59 |
51 52 57 58
|
syl3anc |
|
| 60 |
|
sstr |
|
| 61 |
60
|
ad2ant2l |
|
| 62 |
61
|
ancoms |
|
| 63 |
|
eleq2 |
|
| 64 |
|
imaeq2 |
|
| 65 |
64
|
sseq1d |
|
| 66 |
63 65
|
anbi12d |
|
| 67 |
66
|
rspcev |
|
| 68 |
56 59 62 67
|
syl12anc |
|
| 69 |
68
|
expr |
|
| 70 |
69
|
rexlimdva |
|
| 71 |
70
|
expimpd |
|
| 72 |
71
|
rexlimdva |
|
| 73 |
50 72
|
syl5 |
|
| 74 |
73
|
expd |
|
| 75 |
49 74
|
syld |
|
| 76 |
75
|
com23 |
|
| 77 |
76
|
exp4a |
|
| 78 |
77
|
ralrimdv |
|
| 79 |
45 78
|
impbid |
|
| 80 |
79
|
pm5.32da |
|
| 81 |
10 80
|
bitrd |
|