Metamath Proof Explorer


Theorem metcnp3

Description: Two ways to express that F is continuous at P for metric spaces. Proposition 14-4.2 of Gleason p. 240. (Contributed by NM, 17-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses metcn.2 J=MetOpenC
metcn.4 K=MetOpenD
Assertion metcnp3 C∞MetXD∞MetYPXFJCnPKPF:XYy+z+FPballCzFPballDy

Proof

Step Hyp Ref Expression
1 metcn.2 J=MetOpenC
2 metcn.4 K=MetOpenD
3 1 mopntopon C∞MetXJTopOnX
4 3 3ad2ant1 C∞MetXD∞MetYPXJTopOnX
5 2 mopnval D∞MetYK=topGenranballD
6 5 3ad2ant2 C∞MetXD∞MetYPXK=topGenranballD
7 2 mopntopon D∞MetYKTopOnY
8 7 3ad2ant2 C∞MetXD∞MetYPXKTopOnY
9 simp3 C∞MetXD∞MetYPXPX
10 4 6 8 9 tgcnp C∞MetXD∞MetYPXFJCnPKPF:XYuranballDFPuvJPvFvu
11 simpll2 C∞MetXD∞MetYPXF:XYy+D∞MetY
12 simplr C∞MetXD∞MetYPXF:XYy+F:XY
13 simpll3 C∞MetXD∞MetYPXF:XYy+PX
14 12 13 ffvelcdmd C∞MetXD∞MetYPXF:XYy+FPY
15 simpr C∞MetXD∞MetYPXF:XYy+y+
16 blcntr D∞MetYFPYy+FPFPballDy
17 11 14 15 16 syl3anc C∞MetXD∞MetYPXF:XYy+FPFPballDy
18 rpxr y+y*
19 18 adantl C∞MetXD∞MetYPXF:XYy+y*
20 blelrn D∞MetYFPYy*FPballDyranballD
21 11 14 19 20 syl3anc C∞MetXD∞MetYPXF:XYy+FPballDyranballD
22 eleq2 u=FPballDyFPuFPFPballDy
23 sseq2 u=FPballDyFvuFvFPballDy
24 23 anbi2d u=FPballDyPvFvuPvFvFPballDy
25 24 rexbidv u=FPballDyvJPvFvuvJPvFvFPballDy
26 22 25 imbi12d u=FPballDyFPuvJPvFvuFPFPballDyvJPvFvFPballDy
27 26 rspcv FPballDyranballDuranballDFPuvJPvFvuFPFPballDyvJPvFvFPballDy
28 21 27 syl C∞MetXD∞MetYPXF:XYy+uranballDFPuvJPvFvuFPFPballDyvJPvFvFPballDy
29 17 28 mpid C∞MetXD∞MetYPXF:XYy+uranballDFPuvJPvFvuvJPvFvFPballDy
30 simpl1 C∞MetXD∞MetYPXF:XYC∞MetX
31 30 ad2antrr C∞MetXD∞MetYPXF:XYy+vJPvC∞MetX
32 simplrr C∞MetXD∞MetYPXF:XYy+vJPvvJ
33 simpr C∞MetXD∞MetYPXF:XYy+vJPvPv
34 1 mopni2 C∞MetXvJPvz+PballCzv
35 31 32 33 34 syl3anc C∞MetXD∞MetYPXF:XYy+vJPvz+PballCzv
36 sstr2 FPballCzFvFvFPballDyFPballCzFPballDy
37 imass2 PballCzvFPballCzFv
38 36 37 syl11 FvFPballDyPballCzvFPballCzFPballDy
39 38 reximdv FvFPballDyz+PballCzvz+FPballCzFPballDy
40 35 39 syl5com C∞MetXD∞MetYPXF:XYy+vJPvFvFPballDyz+FPballCzFPballDy
41 40 expimpd C∞MetXD∞MetYPXF:XYy+vJPvFvFPballDyz+FPballCzFPballDy
42 41 expr C∞MetXD∞MetYPXF:XYy+vJPvFvFPballDyz+FPballCzFPballDy
43 42 rexlimdv C∞MetXD∞MetYPXF:XYy+vJPvFvFPballDyz+FPballCzFPballDy
44 29 43 syld C∞MetXD∞MetYPXF:XYy+uranballDFPuvJPvFvuz+FPballCzFPballDy
45 44 ralrimdva C∞MetXD∞MetYPXF:XYuranballDFPuvJPvFvuy+z+FPballCzFPballDy
46 simpl2 C∞MetXD∞MetYPXF:XYD∞MetY
47 blss D∞MetYuranballDFPuy+FPballDyu
48 47 3expib D∞MetYuranballDFPuy+FPballDyu
49 46 48 syl C∞MetXD∞MetYPXF:XYuranballDFPuy+FPballDyu
50 r19.29r y+FPballDyuy+z+FPballCzFPballDyy+FPballDyuz+FPballCzFPballDy
51 30 ad5ant12 C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyC∞MetX
52 13 ad2antrr C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyPX
53 rpxr z+z*
54 53 ad2antrl C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyz*
55 1 blopn C∞MetXPXz*PballCzJ
56 51 52 54 55 syl3anc C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyPballCzJ
57 simprl C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyz+
58 blcntr C∞MetXPXz+PPballCz
59 51 52 57 58 syl3anc C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyPPballCz
60 sstr FPballCzFPballDyFPballDyuFPballCzu
61 60 ad2ant2l z+FPballCzFPballDyC∞MetXD∞MetYPXF:XYy+FPballDyuFPballCzu
62 61 ancoms C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyFPballCzu
63 eleq2 v=PballCzPvPPballCz
64 imaeq2 v=PballCzFv=FPballCz
65 64 sseq1d v=PballCzFvuFPballCzu
66 63 65 anbi12d v=PballCzPvFvuPPballCzFPballCzu
67 66 rspcev PballCzJPPballCzFPballCzuvJPvFvu
68 56 59 62 67 syl12anc C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyvJPvFvu
69 68 expr C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyvJPvFvu
70 69 rexlimdva C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyvJPvFvu
71 70 expimpd C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyvJPvFvu
72 71 rexlimdva C∞MetXD∞MetYPXF:XYy+FPballDyuz+FPballCzFPballDyvJPvFvu
73 50 72 syl5 C∞MetXD∞MetYPXF:XYy+FPballDyuy+z+FPballCzFPballDyvJPvFvu
74 73 expd C∞MetXD∞MetYPXF:XYy+FPballDyuy+z+FPballCzFPballDyvJPvFvu
75 49 74 syld C∞MetXD∞MetYPXF:XYuranballDFPuy+z+FPballCzFPballDyvJPvFvu
76 75 com23 C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDyuranballDFPuvJPvFvu
77 76 exp4a C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDyuranballDFPuvJPvFvu
78 77 ralrimdv C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDyuranballDFPuvJPvFvu
79 45 78 impbid C∞MetXD∞MetYPXF:XYuranballDFPuvJPvFvuy+z+FPballCzFPballDy
80 79 pm5.32da C∞MetXD∞MetYPXF:XYuranballDFPuvJPvFvuF:XYy+z+FPballCzFPballDy
81 10 80 bitrd C∞MetXD∞MetYPXFJCnPKPF:XYy+z+FPballCzFPballDy