Metamath Proof Explorer


Theorem mhpinvcl

Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023)

Ref Expression
Hypotheses mhpinvcl.h H=ImHomPR
mhpinvcl.p P=ImPolyR
mhpinvcl.m M=invgP
mhpinvcl.i φIV
mhpinvcl.r φRGrp
mhpinvcl.n φN0
mhpinvcl.x φXHN
Assertion mhpinvcl φMXHN

Proof

Step Hyp Ref Expression
1 mhpinvcl.h H=ImHomPR
2 mhpinvcl.p P=ImPolyR
3 mhpinvcl.m M=invgP
4 mhpinvcl.i φIV
5 mhpinvcl.r φRGrp
6 mhpinvcl.n φN0
7 mhpinvcl.x φXHN
8 eqid BaseP=BaseP
9 eqid 0R=0R
10 eqid h0I|h-1Fin=h0I|h-1Fin
11 2 mplgrp IVRGrpPGrp
12 4 5 11 syl2anc φPGrp
13 1 2 8 4 5 6 7 mhpmpl φXBaseP
14 8 3 grpinvcl PGrpXBasePMXBaseP
15 12 13 14 syl2anc φMXBaseP
16 eqid invgR=invgR
17 2 8 16 3 4 5 13 mplneg φMX=invgRX
18 17 oveq1d φMXsupp0R=invgRXsupp0R
19 eqid BaseR=BaseR
20 19 16 grpinvfn invgRFnBaseR
21 20 a1i φinvgRFnBaseR
22 2 19 8 10 13 mplelf φX:h0I|h-1FinBaseR
23 ovex 0IV
24 23 rabex h0I|h-1FinV
25 24 a1i φh0I|h-1FinV
26 fvexd φ0RV
27 9 16 grpinvid RGrpinvgR0R=0R
28 5 27 syl φinvgR0R=0R
29 21 22 25 26 28 suppcoss φinvgRXsupp0RXsupp0R
30 18 29 eqsstrd φMXsupp0RXsupp0R
31 1 9 10 4 5 6 7 mhpdeg φXsupp0Rgh0I|h-1Fin|fld𝑠0g=N
32 30 31 sstrd φMXsupp0Rgh0I|h-1Fin|fld𝑠0g=N
33 1 2 8 9 10 4 5 6 15 32 ismhp2 φMXHN