Metamath Proof Explorer


Theorem mreclatBAD

Description: A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015) TODO ( df-riota update): Reprove using isclat instead of the isclatBAD. hypothesis. See commented-out mreclat above. See mreclat for a good version.

Ref Expression
Hypotheses mreclat.i I=toIncC
isclatBAD. ICLatIPosetxxBaseIlubIxBaseIglbIxBaseI
Assertion mreclatBAD CMooreXICLat

Proof

Step Hyp Ref Expression
1 mreclat.i I=toIncC
2 isclatBAD. ICLatIPosetxxBaseIlubIxBaseIglbIxBaseI
3 1 ipopos IPoset
4 3 a1i CMooreXIPoset
5 eqid mrClsC=mrClsC
6 eqid lubI=lubI
7 1 5 6 mrelatlub CMooreXxClubIx=mrClsCx
8 uniss xCxC
9 8 adantl CMooreXxCxC
10 mreuni CMooreXC=X
11 10 adantr CMooreXxCC=X
12 9 11 sseqtrd CMooreXxCxX
13 5 mrccl CMooreXxXmrClsCxC
14 12 13 syldan CMooreXxCmrClsCxC
15 7 14 eqeltrd CMooreXxClubIxC
16 fveq2 x=glbIx=glbI
17 16 adantl CMooreXxCx=glbIx=glbI
18 eqid glbI=glbI
19 1 18 mrelatglb0 CMooreXglbI=X
20 19 ad2antrr CMooreXxCx=glbI=X
21 17 20 eqtrd CMooreXxCx=glbIx=X
22 mre1cl CMooreXXC
23 22 ad2antrr CMooreXxCx=XC
24 21 23 eqeltrd CMooreXxCx=glbIxC
25 1 18 mrelatglb CMooreXxCxglbIx=x
26 mreintcl CMooreXxCxxC
27 25 26 eqeltrd CMooreXxCxglbIxC
28 27 3expa CMooreXxCxglbIxC
29 24 28 pm2.61dane CMooreXxCglbIxC
30 15 29 jca CMooreXxClubIxCglbIxC
31 30 ex CMooreXxClubIxCglbIxC
32 1 ipobas CMooreXC=BaseI
33 sseq2 C=BaseIxCxBaseI
34 eleq2 C=BaseIlubIxClubIxBaseI
35 eleq2 C=BaseIglbIxCglbIxBaseI
36 34 35 anbi12d C=BaseIlubIxCglbIxClubIxBaseIglbIxBaseI
37 33 36 imbi12d C=BaseIxClubIxCglbIxCxBaseIlubIxBaseIglbIxBaseI
38 32 37 syl CMooreXxClubIxCglbIxCxBaseIlubIxBaseIglbIxBaseI
39 31 38 mpbid CMooreXxBaseIlubIxBaseIglbIxBaseI
40 39 alrimiv CMooreXxxBaseIlubIxBaseIglbIxBaseI
41 4 40 2 sylanbrc CMooreXICLat