Metamath Proof Explorer


Theorem mreexmrid

Description: In a Moore system whose closure operator has the exchange property, if a set is independent and an element is not in its closure, then adding the element to the set gives another independent set. Lemma 4.1.5 in FaureFrolicher p. 84. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexmrid.1 φ A Moore X
mreexmrid.2 N = mrCls A
mreexmrid.3 I = mrInd A
mreexmrid.4 φ s 𝒫 X y X z N s y N s y N s z
mreexmrid.5 φ S I
mreexmrid.6 φ Y X
mreexmrid.7 φ ¬ Y N S
Assertion mreexmrid φ S Y I

Proof

Step Hyp Ref Expression
1 mreexmrid.1 φ A Moore X
2 mreexmrid.2 N = mrCls A
3 mreexmrid.3 I = mrInd A
4 mreexmrid.4 φ s 𝒫 X y X z N s y N s y N s z
5 mreexmrid.5 φ S I
6 mreexmrid.6 φ Y X
7 mreexmrid.7 φ ¬ Y N S
8 3 1 5 mrissd φ S X
9 6 snssd φ Y X
10 8 9 unssd φ S Y X
11 1 3ad2ant1 φ x S x N S Y x A Moore X
12 11 elfvexd φ x S x N S Y x X V
13 4 3ad2ant1 φ x S x N S Y x s 𝒫 X y X z N s y N s y N s z
14 5 3ad2ant1 φ x S x N S Y x S I
15 3 11 14 mrissd φ x S x N S Y x S X
16 15 ssdifssd φ x S x N S Y x S x X
17 6 3ad2ant1 φ x S x N S Y x Y X
18 simp3 φ x S x N S Y x x N S Y x
19 difundir S Y x = S x Y x
20 simp2 φ x S x N S Y x x S
21 1 2 8 mrcssidd φ S N S
22 21 7 ssneldd φ ¬ Y S
23 22 3ad2ant1 φ x S x N S Y x ¬ Y S
24 nelneq x S ¬ Y S ¬ x = Y
25 20 23 24 syl2anc φ x S x N S Y x ¬ x = Y
26 elsni x Y x = Y
27 25 26 nsyl φ x S x N S Y x ¬ x Y
28 difsnb ¬ x Y Y x = Y
29 27 28 sylib φ x S x N S Y x Y x = Y
30 29 uneq2d φ x S x N S Y x S x Y x = S x Y
31 19 30 syl5eq φ x S x N S Y x S Y x = S x Y
32 31 fveq2d φ x S x N S Y x N S Y x = N S x Y
33 18 32 eleqtrd φ x S x N S Y x x N S x Y
34 2 3 11 14 20 ismri2dad φ x S x N S Y x ¬ x N S x
35 12 13 16 17 33 34 mreexd φ x S x N S Y x Y N S x x
36 7 3ad2ant1 φ x S x N S Y x ¬ Y N S
37 undif1 S x x = S x
38 20 snssd φ x S x N S Y x x S
39 ssequn2 x S S x = S
40 38 39 sylib φ x S x N S Y x S x = S
41 37 40 syl5eq φ x S x N S Y x S x x = S
42 41 fveq2d φ x S x N S Y x N S x x = N S
43 36 42 neleqtrrd φ x S x N S Y x ¬ Y N S x x
44 35 43 pm2.65i ¬ φ x S x N S Y x
45 df-3an φ x S x N S Y x φ x S x N S Y x
46 44 45 mtbi ¬ φ x S x N S Y x
47 46 imnani φ x S ¬ x N S Y x
48 47 adantlr φ x S Y x S ¬ x N S Y x
49 26 adantl φ x S Y x Y x = Y
50 7 ad2antrr φ x S Y x Y ¬ Y N S
51 49 50 eqneltrd φ x S Y x Y ¬ x N S
52 49 sneqd φ x S Y x Y x = Y
53 52 difeq2d φ x S Y x Y S Y x = S Y Y
54 difun2 S Y Y = S Y
55 53 54 syl6eq φ x S Y x Y S Y x = S Y
56 difsnb ¬ Y S S Y = S
57 22 56 sylib φ S Y = S
58 57 ad2antrr φ x S Y x Y S Y = S
59 55 58 eqtrd φ x S Y x Y S Y x = S
60 59 fveq2d φ x S Y x Y N S Y x = N S
61 51 60 neleqtrrd φ x S Y x Y ¬ x N S Y x
62 simpr φ x S Y x S Y
63 elun x S Y x S x Y
64 62 63 sylib φ x S Y x S x Y
65 48 61 64 mpjaodan φ x S Y ¬ x N S Y x
66 65 ralrimiva φ x S Y ¬ x N S Y x
67 2 3 1 10 66 ismri2dd φ S Y I