Metamath Proof Explorer


Theorem mreexmrid

Description: In a Moore system whose closure operator has the exchange property, if a set is independent and an element is not in its closure, then adding the element to the set gives another independent set. Lemma 4.1.5 in FaureFrolicher p. 84. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexmrid.1 φAMooreX
mreexmrid.2 N=mrClsA
mreexmrid.3 I=mrIndA
mreexmrid.4 φs𝒫XyXzNsyNsyNsz
mreexmrid.5 φSI
mreexmrid.6 φYX
mreexmrid.7 φ¬YNS
Assertion mreexmrid φSYI

Proof

Step Hyp Ref Expression
1 mreexmrid.1 φAMooreX
2 mreexmrid.2 N=mrClsA
3 mreexmrid.3 I=mrIndA
4 mreexmrid.4 φs𝒫XyXzNsyNsyNsz
5 mreexmrid.5 φSI
6 mreexmrid.6 φYX
7 mreexmrid.7 φ¬YNS
8 3 1 5 mrissd φSX
9 6 snssd φYX
10 8 9 unssd φSYX
11 1 3ad2ant1 φxSxNSYxAMooreX
12 11 elfvexd φxSxNSYxXV
13 4 3ad2ant1 φxSxNSYxs𝒫XyXzNsyNsyNsz
14 5 3ad2ant1 φxSxNSYxSI
15 3 11 14 mrissd φxSxNSYxSX
16 15 ssdifssd φxSxNSYxSxX
17 6 3ad2ant1 φxSxNSYxYX
18 simp3 φxSxNSYxxNSYx
19 difundir SYx=SxYx
20 simp2 φxSxNSYxxS
21 1 2 8 mrcssidd φSNS
22 21 7 ssneldd φ¬YS
23 22 3ad2ant1 φxSxNSYx¬YS
24 nelneq xS¬YS¬x=Y
25 20 23 24 syl2anc φxSxNSYx¬x=Y
26 elsni xYx=Y
27 25 26 nsyl φxSxNSYx¬xY
28 difsnb ¬xYYx=Y
29 27 28 sylib φxSxNSYxYx=Y
30 29 uneq2d φxSxNSYxSxYx=SxY
31 19 30 eqtrid φxSxNSYxSYx=SxY
32 31 fveq2d φxSxNSYxNSYx=NSxY
33 18 32 eleqtrd φxSxNSYxxNSxY
34 2 3 11 14 20 ismri2dad φxSxNSYx¬xNSx
35 12 13 16 17 33 34 mreexd φxSxNSYxYNSxx
36 7 3ad2ant1 φxSxNSYx¬YNS
37 undif1 Sxx=Sx
38 20 snssd φxSxNSYxxS
39 ssequn2 xSSx=S
40 38 39 sylib φxSxNSYxSx=S
41 37 40 eqtrid φxSxNSYxSxx=S
42 41 fveq2d φxSxNSYxNSxx=NS
43 36 42 neleqtrrd φxSxNSYx¬YNSxx
44 35 43 pm2.65i ¬φxSxNSYx
45 df-3an φxSxNSYxφxSxNSYx
46 44 45 mtbi ¬φxSxNSYx
47 46 imnani φxS¬xNSYx
48 47 adantlr φxSYxS¬xNSYx
49 26 adantl φxSYxYx=Y
50 7 ad2antrr φxSYxY¬YNS
51 49 50 eqneltrd φxSYxY¬xNS
52 49 sneqd φxSYxYx=Y
53 52 difeq2d φxSYxYSYx=SYY
54 difun2 SYY=SY
55 53 54 eqtrdi φxSYxYSYx=SY
56 difsnb ¬YSSY=S
57 22 56 sylib φSY=S
58 57 ad2antrr φxSYxYSY=S
59 55 58 eqtrd φxSYxYSYx=S
60 59 fveq2d φxSYxYNSYx=NS
61 51 60 neleqtrrd φxSYxY¬xNSYx
62 simpr φxSYxSY
63 elun xSYxSxY
64 62 63 sylib φxSYxSxY
65 48 61 64 mpjaodan φxSY¬xNSYx
66 65 ralrimiva φxSY¬xNSYx
67 2 3 1 10 66 ismri2dd φSYI