| Step |
Hyp |
Ref |
Expression |
| 1 |
|
msubco.s |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
2 3 1
|
elmsubrn |
|
| 5 |
4
|
eleq2i |
|
| 6 |
|
eqid |
|
| 7 |
|
fvex |
|
| 8 |
7
|
mptex |
|
| 9 |
6 8
|
elrnmpti |
|
| 10 |
5 9
|
bitri |
|
| 11 |
2 3 1
|
elmsubrn |
|
| 12 |
11
|
eleq2i |
|
| 13 |
|
eqid |
|
| 14 |
7
|
mptex |
|
| 15 |
13 14
|
elrnmpti |
|
| 16 |
12 15
|
bitri |
|
| 17 |
|
reeanv |
|
| 18 |
|
simpr |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
19 2 20
|
mexval |
|
| 22 |
18 21
|
eleqtrdi |
|
| 23 |
|
xp1st |
|
| 24 |
22 23
|
syl |
|
| 25 |
3 20
|
mrsubf |
|
| 26 |
25
|
ad2antlr |
|
| 27 |
|
xp2nd |
|
| 28 |
22 27
|
syl |
|
| 29 |
26 28
|
ffvelcdmd |
|
| 30 |
|
opelxpi |
|
| 31 |
24 29 30
|
syl2anc |
|
| 32 |
31 21
|
eleqtrrdi |
|
| 33 |
|
eqidd |
|
| 34 |
|
eqidd |
|
| 35 |
|
fvex |
|
| 36 |
|
fvex |
|
| 37 |
35 36
|
op1std |
|
| 38 |
35 36
|
op2ndd |
|
| 39 |
38
|
fveq2d |
|
| 40 |
37 39
|
opeq12d |
|
| 41 |
32 33 34 40
|
fmptco |
|
| 42 |
|
fvco3 |
|
| 43 |
26 28 42
|
syl2anc |
|
| 44 |
43
|
opeq2d |
|
| 45 |
44
|
mpteq2dva |
|
| 46 |
41 45
|
eqtr4d |
|
| 47 |
3
|
mrsubco |
|
| 48 |
7
|
mptex |
|
| 49 |
|
eqid |
|
| 50 |
|
fveq1 |
|
| 51 |
50
|
opeq2d |
|
| 52 |
51
|
mpteq2dv |
|
| 53 |
49 52
|
elrnmpt1s |
|
| 54 |
47 48 53
|
sylancl |
|
| 55 |
2 3 1
|
elmsubrn |
|
| 56 |
54 55
|
eleqtrrdi |
|
| 57 |
46 56
|
eqeltrd |
|
| 58 |
|
coeq1 |
|
| 59 |
|
coeq2 |
|
| 60 |
58 59
|
sylan9eq |
|
| 61 |
60
|
eleq1d |
|
| 62 |
57 61
|
syl5ibrcom |
|
| 63 |
62
|
rexlimivv |
|
| 64 |
17 63
|
sylbir |
|
| 65 |
10 16 64
|
syl2anb |
|