Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | msubco.s | |
|
Assertion | msubco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubco.s | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 1 | elmsubrn | |
5 | 4 | eleq2i | |
6 | eqid | |
|
7 | fvex | |
|
8 | 7 | mptex | |
9 | 6 8 | elrnmpti | |
10 | 5 9 | bitri | |
11 | 2 3 1 | elmsubrn | |
12 | 11 | eleq2i | |
13 | eqid | |
|
14 | 7 | mptex | |
15 | 13 14 | elrnmpti | |
16 | 12 15 | bitri | |
17 | reeanv | |
|
18 | simpr | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | 19 2 20 | mexval | |
22 | 18 21 | eleqtrdi | |
23 | xp1st | |
|
24 | 22 23 | syl | |
25 | 3 20 | mrsubf | |
26 | 25 | ad2antlr | |
27 | xp2nd | |
|
28 | 22 27 | syl | |
29 | 26 28 | ffvelcdmd | |
30 | opelxpi | |
|
31 | 24 29 30 | syl2anc | |
32 | 31 21 | eleqtrrdi | |
33 | eqidd | |
|
34 | eqidd | |
|
35 | fvex | |
|
36 | fvex | |
|
37 | 35 36 | op1std | |
38 | 35 36 | op2ndd | |
39 | 38 | fveq2d | |
40 | 37 39 | opeq12d | |
41 | 32 33 34 40 | fmptco | |
42 | fvco3 | |
|
43 | 26 28 42 | syl2anc | |
44 | 43 | opeq2d | |
45 | 44 | mpteq2dva | |
46 | 41 45 | eqtr4d | |
47 | 3 | mrsubco | |
48 | 7 | mptex | |
49 | eqid | |
|
50 | fveq1 | |
|
51 | 50 | opeq2d | |
52 | 51 | mpteq2dv | |
53 | 49 52 | elrnmpt1s | |
54 | 47 48 53 | sylancl | |
55 | 2 3 1 | elmsubrn | |
56 | 54 55 | eleqtrrdi | |
57 | 46 56 | eqeltrd | |
58 | coeq1 | |
|
59 | coeq2 | |
|
60 | 58 59 | sylan9eq | |
61 | 60 | eleq1d | |
62 | 57 61 | syl5ibrcom | |
63 | 62 | rexlimivv | |
64 | 17 63 | sylbir | |
65 | 10 16 64 | syl2anb | |