| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgneg2.b |
|
| 2 |
|
mulgneg2.m |
|
| 3 |
|
mulgneg2.i |
|
| 4 |
|
negeq |
|
| 5 |
|
neg0 |
|
| 6 |
4 5
|
eqtrdi |
|
| 7 |
6
|
oveq1d |
|
| 8 |
|
oveq1 |
|
| 9 |
7 8
|
eqeq12d |
|
| 10 |
|
negeq |
|
| 11 |
10
|
oveq1d |
|
| 12 |
|
oveq1 |
|
| 13 |
11 12
|
eqeq12d |
|
| 14 |
|
negeq |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
oveq1 |
|
| 17 |
15 16
|
eqeq12d |
|
| 18 |
|
negeq |
|
| 19 |
18
|
oveq1d |
|
| 20 |
|
oveq1 |
|
| 21 |
19 20
|
eqeq12d |
|
| 22 |
|
negeq |
|
| 23 |
22
|
oveq1d |
|
| 24 |
|
oveq1 |
|
| 25 |
23 24
|
eqeq12d |
|
| 26 |
|
eqid |
|
| 27 |
1 26 2
|
mulg0 |
|
| 28 |
27
|
adantl |
|
| 29 |
1 3
|
grpinvcl |
|
| 30 |
1 26 2
|
mulg0 |
|
| 31 |
29 30
|
syl |
|
| 32 |
28 31
|
eqtr4d |
|
| 33 |
|
oveq1 |
|
| 34 |
|
nn0cn |
|
| 35 |
34
|
adantl |
|
| 36 |
|
ax-1cn |
|
| 37 |
|
negdi |
|
| 38 |
35 36 37
|
sylancl |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
simpll |
|
| 41 |
|
nn0negz |
|
| 42 |
41
|
adantl |
|
| 43 |
|
1z |
|
| 44 |
|
znegcl |
|
| 45 |
43 44
|
mp1i |
|
| 46 |
|
simplr |
|
| 47 |
|
eqid |
|
| 48 |
1 2 47
|
mulgdir |
|
| 49 |
40 42 45 46 48
|
syl13anc |
|
| 50 |
1 2 3
|
mulgm1 |
|
| 51 |
50
|
adantr |
|
| 52 |
51
|
oveq2d |
|
| 53 |
39 49 52
|
3eqtrd |
|
| 54 |
|
grpmnd |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
|
simpr |
|
| 57 |
29
|
adantr |
|
| 58 |
1 2 47
|
mulgnn0p1 |
|
| 59 |
55 56 57 58
|
syl3anc |
|
| 60 |
53 59
|
eqeq12d |
|
| 61 |
33 60
|
imbitrrid |
|
| 62 |
61
|
ex |
|
| 63 |
|
fveq2 |
|
| 64 |
|
simpll |
|
| 65 |
|
nnnegz |
|
| 66 |
65
|
adantl |
|
| 67 |
|
simplr |
|
| 68 |
1 2 3
|
mulgneg |
|
| 69 |
64 66 67 68
|
syl3anc |
|
| 70 |
|
id |
|
| 71 |
1 2 3
|
mulgnegnn |
|
| 72 |
70 29 71
|
syl2anr |
|
| 73 |
69 72
|
eqeq12d |
|
| 74 |
63 73
|
imbitrrid |
|
| 75 |
74
|
ex |
|
| 76 |
9 13 17 21 25 32 62 75
|
zindd |
|
| 77 |
76
|
3impia |
|
| 78 |
77
|
3com23 |
|