Metamath Proof Explorer


Theorem mulsproplem12

Description: Lemma for surreal multiplication. Demonstrate the second half of the inductive statement assuming C and D are not the same age and E and F are not the same age. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1 φ a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
mulsproplem.2 φ C No
mulsproplem.3 φ D No
mulsproplem.4 φ E No
mulsproplem.5 φ F No
mulsproplem.6 φ C < s D
mulsproplem.7 φ E < s F
mulsproplem12.1 φ bday C bday D bday D bday C
mulsproplem12.2 φ bday E bday F bday F bday E
Assertion mulsproplem12 φ C s F - s C s E < s D s F - s D s E

Proof

Step Hyp Ref Expression
1 mulsproplem.1 φ a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
2 mulsproplem.2 φ C No
3 mulsproplem.3 φ D No
4 mulsproplem.4 φ E No
5 mulsproplem.5 φ F No
6 mulsproplem.6 φ C < s D
7 mulsproplem.7 φ E < s F
8 mulsproplem12.1 φ bday C bday D bday D bday C
9 mulsproplem12.2 φ bday E bday F bday F bday E
10 unidm bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday 0 s + bday 0 s bday 0 s + bday 0 s
11 unidm bday 0 s + bday 0 s bday 0 s + bday 0 s = bday 0 s + bday 0 s
12 bday0s bday 0 s =
13 12 12 oveq12i bday 0 s + bday 0 s = +
14 0elon On
15 naddrid On + =
16 14 15 ax-mp + =
17 13 16 eqtri bday 0 s + bday 0 s =
18 11 17 eqtri bday 0 s + bday 0 s bday 0 s + bday 0 s =
19 10 18 eqtri bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s =
20 19 uneq2i bday D + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday D + bday F
21 un0 bday D + bday F = bday D + bday F
22 20 21 eqtri bday D + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday D + bday F
23 ssun2 bday D + bday F bday C + bday E bday D + bday F
24 ssun1 bday C + bday E bday D + bday F bday C + bday E bday D + bday F bday C + bday F bday D + bday E
25 23 24 sstri bday D + bday F bday C + bday E bday D + bday F bday C + bday F bday D + bday E
26 ssun2 bday C + bday E bday D + bday F bday C + bday F bday D + bday E bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
27 25 26 sstri bday D + bday F bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
28 22 27 eqsstri bday D + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
29 28 sseli bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday D + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
30 29 imim1i bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday D + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
31 30 6ralimi a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday D + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
32 1 31 syl φ a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday D + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
33 32 3 5 mulsproplem10 φ D s F No g | p L D q L F g = p s F + s D s q - s p s q h | r R D s R F h = r s F + s D s s - s r s s s D s F D s F s i | t L D u R F i = t s F + s D s u - s t s u j | v R D w L F j = v s F + s D s w - s v s w
34 33 simp2d φ g | p L D q L F g = p s F + s D s q - s p s q h | r R D s R F h = r s F + s D s s - s r s s s D s F
35 34 adantr φ bday C bday D bday E bday F g | p L D q L F g = p s F + s D s q - s p s q h | r R D s R F h = r s F + s D s s - s r s s s D s F
36 simprl φ bday C bday D bday E bday F bday C bday D
37 bdayelon bday D On
38 2 adantr φ bday C bday D bday E bday F C No
39 oldbday bday D On C No C Old bday D bday C bday D
40 37 38 39 sylancr φ bday C bday D bday E bday F C Old bday D bday C bday D
41 36 40 mpbird φ bday C bday D bday E bday F C Old bday D
42 6 adantr φ bday C bday D bday E bday F C < s D
43 elleft C L D C Old bday D C < s D
44 41 42 43 sylanbrc φ bday C bday D bday E bday F C L D
45 simprr φ bday C bday D bday E bday F bday E bday F
46 bdayelon bday F On
47 4 adantr φ bday C bday D bday E bday F E No
48 oldbday bday F On E No E Old bday F bday E bday F
49 46 47 48 sylancr φ bday C bday D bday E bday F E Old bday F bday E bday F
50 45 49 mpbird φ bday C bday D bday E bday F E Old bday F
51 7 adantr φ bday C bday D bday E bday F E < s F
52 elleft E L F E Old bday F E < s F
53 50 51 52 sylanbrc φ bday C bday D bday E bday F E L F
54 eqid C s F + s D s E - s C s E = C s F + s D s E - s C s E
55 oveq1 p = C p s F = C s F
56 55 oveq1d p = C p s F + s D s q = C s F + s D s q
57 oveq1 p = C p s q = C s q
58 56 57 oveq12d p = C p s F + s D s q - s p s q = C s F + s D s q - s C s q
59 58 eqeq2d p = C C s F + s D s E - s C s E = p s F + s D s q - s p s q C s F + s D s E - s C s E = C s F + s D s q - s C s q
60 oveq2 q = E D s q = D s E
61 60 oveq2d q = E C s F + s D s q = C s F + s D s E
62 oveq2 q = E C s q = C s E
63 61 62 oveq12d q = E C s F + s D s q - s C s q = C s F + s D s E - s C s E
64 63 eqeq2d q = E C s F + s D s E - s C s E = C s F + s D s q - s C s q C s F + s D s E - s C s E = C s F + s D s E - s C s E
65 59 64 rspc2ev C L D E L F C s F + s D s E - s C s E = C s F + s D s E - s C s E p L D q L F C s F + s D s E - s C s E = p s F + s D s q - s p s q
66 54 65 mp3an3 C L D E L F p L D q L F C s F + s D s E - s C s E = p s F + s D s q - s p s q
67 44 53 66 syl2anc φ bday C bday D bday E bday F p L D q L F C s F + s D s E - s C s E = p s F + s D s q - s p s q
68 ovex C s F + s D s E - s C s E V
69 eqeq1 g = C s F + s D s E - s C s E g = p s F + s D s q - s p s q C s F + s D s E - s C s E = p s F + s D s q - s p s q
70 69 2rexbidv g = C s F + s D s E - s C s E p L D q L F g = p s F + s D s q - s p s q p L D q L F C s F + s D s E - s C s E = p s F + s D s q - s p s q
71 68 70 elab C s F + s D s E - s C s E g | p L D q L F g = p s F + s D s q - s p s q p L D q L F C s F + s D s E - s C s E = p s F + s D s q - s p s q
72 67 71 sylibr φ bday C bday D bday E bday F C s F + s D s E - s C s E g | p L D q L F g = p s F + s D s q - s p s q
73 elun1 C s F + s D s E - s C s E g | p L D q L F g = p s F + s D s q - s p s q C s F + s D s E - s C s E g | p L D q L F g = p s F + s D s q - s p s q h | r R D s R F h = r s F + s D s s - s r s s
74 72 73 syl φ bday C bday D bday E bday F C s F + s D s E - s C s E g | p L D q L F g = p s F + s D s q - s p s q h | r R D s R F h = r s F + s D s s - s r s s
75 ovex D s F V
76 75 snid D s F D s F
77 76 a1i φ bday C bday D bday E bday F D s F D s F
78 35 74 77 ssltsepcd φ bday C bday D bday E bday F C s F + s D s E - s C s E < s D s F
79 19 uneq2i bday C + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday C + bday F
80 un0 bday C + bday F = bday C + bday F
81 79 80 eqtri bday C + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday C + bday F
82 ssun1 bday C + bday F bday C + bday F bday D + bday E
83 ssun2 bday C + bday F bday D + bday E bday C + bday E bday D + bday F bday C + bday F bday D + bday E
84 82 83 sstri bday C + bday F bday C + bday E bday D + bday F bday C + bday F bday D + bday E
85 84 26 sstri bday C + bday F bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
86 81 85 eqsstri bday C + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
87 86 sseli bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday C + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
88 87 imim1i bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday C + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
89 88 6ralimi a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday C + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
90 1 89 syl φ a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday C + bday F bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
91 90 2 5 mulsproplem10 φ C s F No g | p L C q L F g = p s F + s C s q - s p s q h | r R C s R F h = r s F + s C s s - s r s s s C s F C s F s i | t L C u R F i = t s F + s C s u - s t s u j | v R C w L F j = v s F + s C s w - s v s w
92 91 simp1d φ C s F No
93 19 uneq2i bday D + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday D + bday E
94 un0 bday D + bday E = bday D + bday E
95 93 94 eqtri bday D + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday D + bday E
96 ssun2 bday D + bday E bday C + bday F bday D + bday E
97 96 83 sstri bday D + bday E bday C + bday E bday D + bday F bday C + bday F bday D + bday E
98 97 26 sstri bday D + bday E bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
99 95 98 eqsstri bday D + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
100 99 sseli bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday D + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
101 100 imim1i bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday D + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
102 101 6ralimi a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday D + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
103 1 102 syl φ a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday D + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
104 103 3 4 mulsproplem10 φ D s E No g | p L D q L E g = p s E + s D s q - s p s q h | r R D s R E h = r s E + s D s s - s r s s s D s E D s E s i | t L D u R E i = t s E + s D s u - s t s u j | v R D w L E j = v s E + s D s w - s v s w
105 104 simp1d φ D s E No
106 92 105 addscomd φ C s F + s D s E = D s E + s C s F
107 106 oveq1d φ C s F + s D s E - s C s E = D s E + s C s F - s C s E
108 19 uneq2i bday C + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday C + bday E
109 un0 bday C + bday E = bday C + bday E
110 108 109 eqtri bday C + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s = bday C + bday E
111 ssun1 bday C + bday E bday C + bday E bday D + bday F
112 111 24 sstri bday C + bday E bday C + bday E bday D + bday F bday C + bday F bday D + bday E
113 112 26 sstri bday C + bday E bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
114 110 113 eqsstri bday C + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
115 114 sseli bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday C + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E
116 115 imim1i bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday C + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
117 116 6ralimi a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday C + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
118 1 117 syl φ a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday C + bday E bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s bday 0 s + bday 0 s a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
119 118 2 4 mulsproplem10 φ C s E No g | p L C q L E g = p s E + s C s q - s p s q h | r R C s R E h = r s E + s C s s - s r s s s C s E C s E s i | t L C u R E i = t s E + s C s u - s t s u j | v R C w L E j = v s E + s C s w - s v s w
120 119 simp1d φ C s E No
121 105 92 120 addsubsassd φ D s E + s C s F - s C s E = D s E + s C s F - s C s E
122 107 121 eqtrd φ C s F + s D s E - s C s E = D s E + s C s F - s C s E
123 122 breq1d φ C s F + s D s E - s C s E < s D s F D s E + s C s F - s C s E < s D s F
124 92 120 subscld φ C s F - s C s E No
125 33 simp1d φ D s F No
126 105 124 125 sltaddsub2d φ D s E + s C s F - s C s E < s D s F C s F - s C s E < s D s F - s D s E
127 123 126 bitrd φ C s F + s D s E - s C s E < s D s F C s F - s C s E < s D s F - s D s E
128 127 adantr φ bday C bday D bday E bday F C s F + s D s E - s C s E < s D s F C s F - s C s E < s D s F - s D s E
129 78 128 mpbid φ bday C bday D bday E bday F C s F - s C s E < s D s F - s D s E
130 129 anassrs φ bday C bday D bday E bday F C s F - s C s E < s D s F - s D s E
131 104 simp3d φ D s E s i | t L D u R E i = t s E + s D s u - s t s u j | v R D w L E j = v s E + s D s w - s v s w
132 131 adantr φ bday C bday D bday F bday E D s E s i | t L D u R E i = t s E + s D s u - s t s u j | v R D w L E j = v s E + s D s w - s v s w
133 ovex D s E V
134 133 snid D s E D s E
135 134 a1i φ bday C bday D bday F bday E D s E D s E
136 simprl φ bday C bday D bday F bday E bday C bday D
137 2 adantr φ bday C bday D bday F bday E C No
138 37 137 39 sylancr φ bday C bday D bday F bday E C Old bday D bday C bday D
139 136 138 mpbird φ bday C bday D bday F bday E C Old bday D
140 6 adantr φ bday C bday D bday F bday E C < s D
141 139 140 43 sylanbrc φ bday C bday D bday F bday E C L D
142 simprr φ bday C bday D bday F bday E bday F bday E
143 bdayelon bday E On
144 5 adantr φ bday C bday D bday F bday E F No
145 oldbday bday E On F No F Old bday E bday F bday E
146 143 144 145 sylancr φ bday C bday D bday F bday E F Old bday E bday F bday E
147 142 146 mpbird φ bday C bday D bday F bday E F Old bday E
148 7 adantr φ bday C bday D bday F bday E E < s F
149 elright F R E F Old bday E E < s F
150 147 148 149 sylanbrc φ bday C bday D bday F bday E F R E
151 eqid C s E + s D s F - s C s F = C s E + s D s F - s C s F
152 oveq1 t = C t s E = C s E
153 152 oveq1d t = C t s E + s D s u = C s E + s D s u
154 oveq1 t = C t s u = C s u
155 153 154 oveq12d t = C t s E + s D s u - s t s u = C s E + s D s u - s C s u
156 155 eqeq2d t = C C s E + s D s F - s C s F = t s E + s D s u - s t s u C s E + s D s F - s C s F = C s E + s D s u - s C s u
157 oveq2 u = F D s u = D s F
158 157 oveq2d u = F C s E + s D s u = C s E + s D s F
159 oveq2 u = F C s u = C s F
160 158 159 oveq12d u = F C s E + s D s u - s C s u = C s E + s D s F - s C s F
161 160 eqeq2d u = F C s E + s D s F - s C s F = C s E + s D s u - s C s u C s E + s D s F - s C s F = C s E + s D s F - s C s F
162 156 161 rspc2ev C L D F R E C s E + s D s F - s C s F = C s E + s D s F - s C s F t L D u R E C s E + s D s F - s C s F = t s E + s D s u - s t s u
163 151 162 mp3an3 C L D F R E t L D u R E C s E + s D s F - s C s F = t s E + s D s u - s t s u
164 141 150 163 syl2anc φ bday C bday D bday F bday E t L D u R E C s E + s D s F - s C s F = t s E + s D s u - s t s u
165 ovex C s E + s D s F - s C s F V
166 eqeq1 i = C s E + s D s F - s C s F i = t s E + s D s u - s t s u C s E + s D s F - s C s F = t s E + s D s u - s t s u
167 166 2rexbidv i = C s E + s D s F - s C s F t L D u R E i = t s E + s D s u - s t s u t L D u R E C s E + s D s F - s C s F = t s E + s D s u - s t s u
168 165 167 elab C s E + s D s F - s C s F i | t L D u R E i = t s E + s D s u - s t s u t L D u R E C s E + s D s F - s C s F = t s E + s D s u - s t s u
169 164 168 sylibr φ bday C bday D bday F bday E C s E + s D s F - s C s F i | t L D u R E i = t s E + s D s u - s t s u
170 elun1 C s E + s D s F - s C s F i | t L D u R E i = t s E + s D s u - s t s u C s E + s D s F - s C s F i | t L D u R E i = t s E + s D s u - s t s u j | v R D w L E j = v s E + s D s w - s v s w
171 169 170 syl φ bday C bday D bday F bday E C s E + s D s F - s C s F i | t L D u R E i = t s E + s D s u - s t s u j | v R D w L E j = v s E + s D s w - s v s w
172 132 135 171 ssltsepcd φ bday C bday D bday F bday E D s E < s C s E + s D s F - s C s F
173 120 125 addscomd φ C s E + s D s F = D s F + s C s E
174 173 oveq1d φ C s E + s D s F - s C s F = D s F + s C s E - s C s F
175 125 120 92 addsubsassd φ D s F + s C s E - s C s F = D s F + s C s E - s C s F
176 174 175 eqtrd φ C s E + s D s F - s C s F = D s F + s C s E - s C s F
177 176 breq2d φ D s E < s C s E + s D s F - s C s F D s E < s D s F + s C s E - s C s F
178 120 92 subscld φ C s E - s C s F No
179 105 125 178 sltsubadd2d φ D s E - s D s F < s C s E - s C s F D s E < s D s F + s C s E - s C s F
180 177 179 bitr4d φ D s E < s C s E + s D s F - s C s F D s E - s D s F < s C s E - s C s F
181 105 125 120 92 sltsubsub2bd φ D s E - s D s F < s C s E - s C s F C s F - s C s E < s D s F - s D s E
182 180 181 bitrd φ D s E < s C s E + s D s F - s C s F C s F - s C s E < s D s F - s D s E
183 182 adantr φ bday C bday D bday F bday E D s E < s C s E + s D s F - s C s F C s F - s C s E < s D s F - s D s E
184 172 183 mpbid φ bday C bday D bday F bday E C s F - s C s E < s D s F - s D s E
185 184 anassrs φ bday C bday D bday F bday E C s F - s C s E < s D s F - s D s E
186 9 adantr φ bday C bday D bday E bday F bday F bday E
187 130 185 186 mpjaodan φ bday C bday D C s F - s C s E < s D s F - s D s E
188 91 simp3d φ C s F s i | t L C u R F i = t s F + s C s u - s t s u j | v R C w L F j = v s F + s C s w - s v s w
189 188 adantr φ bday D bday C bday E bday F C s F s i | t L C u R F i = t s F + s C s u - s t s u j | v R C w L F j = v s F + s C s w - s v s w
190 ovex C s F V
191 190 snid C s F C s F
192 191 a1i φ bday D bday C bday E bday F C s F C s F
193 simprl φ bday D bday C bday E bday F bday D bday C
194 bdayelon bday C On
195 3 adantr φ bday D bday C bday E bday F D No
196 oldbday bday C On D No D Old bday C bday D bday C
197 194 195 196 sylancr φ bday D bday C bday E bday F D Old bday C bday D bday C
198 193 197 mpbird φ bday D bday C bday E bday F D Old bday C
199 6 adantr φ bday D bday C bday E bday F C < s D
200 elright D R C D Old bday C C < s D
201 198 199 200 sylanbrc φ bday D bday C bday E bday F D R C
202 simprr φ bday D bday C bday E bday F bday E bday F
203 4 adantr φ bday D bday C bday E bday F E No
204 46 203 48 sylancr φ bday D bday C bday E bday F E Old bday F bday E bday F
205 202 204 mpbird φ bday D bday C bday E bday F E Old bday F
206 7 adantr φ bday D bday C bday E bday F E < s F
207 205 206 52 sylanbrc φ bday D bday C bday E bday F E L F
208 eqid D s F + s C s E - s D s E = D s F + s C s E - s D s E
209 oveq1 v = D v s F = D s F
210 209 oveq1d v = D v s F + s C s w = D s F + s C s w
211 oveq1 v = D v s w = D s w
212 210 211 oveq12d v = D v s F + s C s w - s v s w = D s F + s C s w - s D s w
213 212 eqeq2d v = D D s F + s C s E - s D s E = v s F + s C s w - s v s w D s F + s C s E - s D s E = D s F + s C s w - s D s w
214 oveq2 w = E C s w = C s E
215 214 oveq2d w = E D s F + s C s w = D s F + s C s E
216 oveq2 w = E D s w = D s E
217 215 216 oveq12d w = E D s F + s C s w - s D s w = D s F + s C s E - s D s E
218 217 eqeq2d w = E D s F + s C s E - s D s E = D s F + s C s w - s D s w D s F + s C s E - s D s E = D s F + s C s E - s D s E
219 213 218 rspc2ev D R C E L F D s F + s C s E - s D s E = D s F + s C s E - s D s E v R C w L F D s F + s C s E - s D s E = v s F + s C s w - s v s w
220 208 219 mp3an3 D R C E L F v R C w L F D s F + s C s E - s D s E = v s F + s C s w - s v s w
221 201 207 220 syl2anc φ bday D bday C bday E bday F v R C w L F D s F + s C s E - s D s E = v s F + s C s w - s v s w
222 ovex D s F + s C s E - s D s E V
223 eqeq1 j = D s F + s C s E - s D s E j = v s F + s C s w - s v s w D s F + s C s E - s D s E = v s F + s C s w - s v s w
224 223 2rexbidv j = D s F + s C s E - s D s E v R C w L F j = v s F + s C s w - s v s w v R C w L F D s F + s C s E - s D s E = v s F + s C s w - s v s w
225 222 224 elab D s F + s C s E - s D s E j | v R C w L F j = v s F + s C s w - s v s w v R C w L F D s F + s C s E - s D s E = v s F + s C s w - s v s w
226 221 225 sylibr φ bday D bday C bday E bday F D s F + s C s E - s D s E j | v R C w L F j = v s F + s C s w - s v s w
227 elun2 D s F + s C s E - s D s E j | v R C w L F j = v s F + s C s w - s v s w D s F + s C s E - s D s E i | t L C u R F i = t s F + s C s u - s t s u j | v R C w L F j = v s F + s C s w - s v s w
228 226 227 syl φ bday D bday C bday E bday F D s F + s C s E - s D s E i | t L C u R F i = t s F + s C s u - s t s u j | v R C w L F j = v s F + s C s w - s v s w
229 189 192 228 ssltsepcd φ bday D bday C bday E bday F C s F < s D s F + s C s E - s D s E
230 125 120 addscomd φ D s F + s C s E = C s E + s D s F
231 230 oveq1d φ D s F + s C s E - s D s E = C s E + s D s F - s D s E
232 120 125 105 addsubsassd φ C s E + s D s F - s D s E = C s E + s D s F - s D s E
233 231 232 eqtrd φ D s F + s C s E - s D s E = C s E + s D s F - s D s E
234 233 breq2d φ C s F < s D s F + s C s E - s D s E C s F < s C s E + s D s F - s D s E
235 125 105 subscld φ D s F - s D s E No
236 92 120 235 sltsubadd2d φ C s F - s C s E < s D s F - s D s E C s F < s C s E + s D s F - s D s E
237 234 236 bitr4d φ C s F < s D s F + s C s E - s D s E C s F - s C s E < s D s F - s D s E
238 237 adantr φ bday D bday C bday E bday F C s F < s D s F + s C s E - s D s E C s F - s C s E < s D s F - s D s E
239 229 238 mpbid φ bday D bday C bday E bday F C s F - s C s E < s D s F - s D s E
240 239 anassrs φ bday D bday C bday E bday F C s F - s C s E < s D s F - s D s E
241 119 simp2d φ g | p L C q L E g = p s E + s C s q - s p s q h | r R C s R E h = r s E + s C s s - s r s s s C s E
242 241 adantr φ bday D bday C bday F bday E g | p L C q L E g = p s E + s C s q - s p s q h | r R C s R E h = r s E + s C s s - s r s s s C s E
243 simprl φ bday D bday C bday F bday E bday D bday C
244 3 adantr φ bday D bday C bday F bday E D No
245 194 244 196 sylancr φ bday D bday C bday F bday E D Old bday C bday D bday C
246 243 245 mpbird φ bday D bday C bday F bday E D Old bday C
247 6 adantr φ bday D bday C bday F bday E C < s D
248 246 247 200 sylanbrc φ bday D bday C bday F bday E D R C
249 simprr φ bday D bday C bday F bday E bday F bday E
250 5 adantr φ bday D bday C bday F bday E F No
251 143 250 145 sylancr φ bday D bday C bday F bday E F Old bday E bday F bday E
252 249 251 mpbird φ bday D bday C bday F bday E F Old bday E
253 7 adantr φ bday D bday C bday F bday E E < s F
254 252 253 149 sylanbrc φ bday D bday C bday F bday E F R E
255 eqid D s E + s C s F - s D s F = D s E + s C s F - s D s F
256 oveq1 r = D r s E = D s E
257 256 oveq1d r = D r s E + s C s s = D s E + s C s s
258 oveq1 r = D r s s = D s s
259 257 258 oveq12d r = D r s E + s C s s - s r s s = D s E + s C s s - s D s s
260 259 eqeq2d r = D D s E + s C s F - s D s F = r s E + s C s s - s r s s D s E + s C s F - s D s F = D s E + s C s s - s D s s
261 oveq2 s = F C s s = C s F
262 261 oveq2d s = F D s E + s C s s = D s E + s C s F
263 oveq2 s = F D s s = D s F
264 262 263 oveq12d s = F D s E + s C s s - s D s s = D s E + s C s F - s D s F
265 264 eqeq2d s = F D s E + s C s F - s D s F = D s E + s C s s - s D s s D s E + s C s F - s D s F = D s E + s C s F - s D s F
266 260 265 rspc2ev D R C F R E D s E + s C s F - s D s F = D s E + s C s F - s D s F r R C s R E D s E + s C s F - s D s F = r s E + s C s s - s r s s
267 255 266 mp3an3 D R C F R E r R C s R E D s E + s C s F - s D s F = r s E + s C s s - s r s s
268 248 254 267 syl2anc φ bday D bday C bday F bday E r R C s R E D s E + s C s F - s D s F = r s E + s C s s - s r s s
269 ovex D s E + s C s F - s D s F V
270 eqeq1 h = D s E + s C s F - s D s F h = r s E + s C s s - s r s s D s E + s C s F - s D s F = r s E + s C s s - s r s s
271 270 2rexbidv h = D s E + s C s F - s D s F r R C s R E h = r s E + s C s s - s r s s r R C s R E D s E + s C s F - s D s F = r s E + s C s s - s r s s
272 269 271 elab D s E + s C s F - s D s F h | r R C s R E h = r s E + s C s s - s r s s r R C s R E D s E + s C s F - s D s F = r s E + s C s s - s r s s
273 268 272 sylibr φ bday D bday C bday F bday E D s E + s C s F - s D s F h | r R C s R E h = r s E + s C s s - s r s s
274 elun2 D s E + s C s F - s D s F h | r R C s R E h = r s E + s C s s - s r s s D s E + s C s F - s D s F g | p L C q L E g = p s E + s C s q - s p s q h | r R C s R E h = r s E + s C s s - s r s s
275 273 274 syl φ bday D bday C bday F bday E D s E + s C s F - s D s F g | p L C q L E g = p s E + s C s q - s p s q h | r R C s R E h = r s E + s C s s - s r s s
276 ovex C s E V
277 276 snid C s E C s E
278 277 a1i φ bday D bday C bday F bday E C s E C s E
279 242 275 278 ssltsepcd φ bday D bday C bday F bday E D s E + s C s F - s D s F < s C s E
280 105 92 addscomd φ D s E + s C s F = C s F + s D s E
281 280 oveq1d φ D s E + s C s F - s D s F = C s F + s D s E - s D s F
282 92 105 125 addsubsassd φ C s F + s D s E - s D s F = C s F + s D s E - s D s F
283 281 282 eqtrd φ D s E + s C s F - s D s F = C s F + s D s E - s D s F
284 283 breq1d φ D s E + s C s F - s D s F < s C s E C s F + s D s E - s D s F < s C s E
285 105 125 subscld φ D s E - s D s F No
286 92 285 120 sltaddsub2d φ C s F + s D s E - s D s F < s C s E D s E - s D s F < s C s E - s C s F
287 284 286 bitrd φ D s E + s C s F - s D s F < s C s E D s E - s D s F < s C s E - s C s F
288 287 181 bitrd φ D s E + s C s F - s D s F < s C s E C s F - s C s E < s D s F - s D s E
289 288 adantr φ bday D bday C bday F bday E D s E + s C s F - s D s F < s C s E C s F - s C s E < s D s F - s D s E
290 279 289 mpbid φ bday D bday C bday F bday E C s F - s C s E < s D s F - s D s E
291 290 anassrs φ bday D bday C bday F bday E C s F - s C s E < s D s F - s D s E
292 9 adantr φ bday D bday C bday E bday F bday F bday E
293 240 291 292 mpjaodan φ bday D bday C C s F - s C s E < s D s F - s D s E
294 187 293 8 mpjaodan φ C s F - s C s E < s D s F - s D s E