| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsproplem.1 |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 2 |
|
mulsproplem.2 |
|- ( ph -> C e. No ) |
| 3 |
|
mulsproplem.3 |
|- ( ph -> D e. No ) |
| 4 |
|
mulsproplem.4 |
|- ( ph -> E e. No ) |
| 5 |
|
mulsproplem.5 |
|- ( ph -> F e. No ) |
| 6 |
|
mulsproplem.6 |
|- ( ph -> C |
| 7 |
|
mulsproplem.7 |
|- ( ph -> E |
| 8 |
|
mulsproplem12.1 |
|- ( ph -> ( ( bday ` C ) e. ( bday ` D ) \/ ( bday ` D ) e. ( bday ` C ) ) ) |
| 9 |
|
mulsproplem12.2 |
|- ( ph -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
| 10 |
|
unidm |
|- ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) = ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) |
| 11 |
|
unidm |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) = ( ( bday ` 0s ) +no ( bday ` 0s ) ) |
| 12 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
| 13 |
12 12
|
oveq12i |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) ) |
| 14 |
|
0elon |
|- (/) e. On |
| 15 |
|
naddrid |
|- ( (/) e. On -> ( (/) +no (/) ) = (/) ) |
| 16 |
14 15
|
ax-mp |
|- ( (/) +no (/) ) = (/) |
| 17 |
13 16
|
eqtri |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/) |
| 18 |
11 17
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) = (/) |
| 19 |
10 18
|
eqtri |
|- ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) = (/) |
| 20 |
19
|
uneq2i |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` D ) +no ( bday ` F ) ) u. (/) ) |
| 21 |
|
un0 |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. (/) ) = ( ( bday ` D ) +no ( bday ` F ) ) |
| 22 |
20 21
|
eqtri |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` D ) +no ( bday ` F ) ) |
| 23 |
|
ssun2 |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) |
| 24 |
|
ssun1 |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 25 |
23 24
|
sstri |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 26 |
|
ssun2 |
|- ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 27 |
25 26
|
sstri |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 28 |
22 27
|
eqsstri |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 29 |
28
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
| 30 |
29
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 31 |
30
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 32 |
1 31
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 33 |
32 3 5
|
mulsproplem10 |
|- ( ph -> ( ( D x.s F ) e. No /\ ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
| 34 |
33
|
simp2d |
|- ( ph -> ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
| 35 |
34
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
| 36 |
|
simprl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` C ) e. ( bday ` D ) ) |
| 37 |
|
bdayelon |
|- ( bday ` D ) e. On |
| 38 |
2
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. No ) |
| 39 |
|
oldbday |
|- ( ( ( bday ` D ) e. On /\ C e. No ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
| 40 |
37 38 39
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
| 41 |
36 40
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. ( _Old ` ( bday ` D ) ) ) |
| 42 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C |
| 43 |
|
elleft |
|- ( C e. ( _Left ` D ) <-> ( C e. ( _Old ` ( bday ` D ) ) /\ C |
| 44 |
41 42 43
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. ( _Left ` D ) ) |
| 45 |
|
simprr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` E ) e. ( bday ` F ) ) |
| 46 |
|
bdayelon |
|- ( bday ` F ) e. On |
| 47 |
4
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. No ) |
| 48 |
|
oldbday |
|- ( ( ( bday ` F ) e. On /\ E e. No ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
| 49 |
46 47 48
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
| 50 |
45 49
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Old ` ( bday ` F ) ) ) |
| 51 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E |
| 52 |
|
elleft |
|- ( E e. ( _Left ` F ) <-> ( E e. ( _Old ` ( bday ` F ) ) /\ E |
| 53 |
50 51 52
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Left ` F ) ) |
| 54 |
|
eqid |
|- ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) |
| 55 |
|
oveq1 |
|- ( p = C -> ( p x.s F ) = ( C x.s F ) ) |
| 56 |
55
|
oveq1d |
|- ( p = C -> ( ( p x.s F ) +s ( D x.s q ) ) = ( ( C x.s F ) +s ( D x.s q ) ) ) |
| 57 |
|
oveq1 |
|- ( p = C -> ( p x.s q ) = ( C x.s q ) ) |
| 58 |
56 57
|
oveq12d |
|- ( p = C -> ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) ) |
| 59 |
58
|
eqeq2d |
|- ( p = C -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) ) ) |
| 60 |
|
oveq2 |
|- ( q = E -> ( D x.s q ) = ( D x.s E ) ) |
| 61 |
60
|
oveq2d |
|- ( q = E -> ( ( C x.s F ) +s ( D x.s q ) ) = ( ( C x.s F ) +s ( D x.s E ) ) ) |
| 62 |
|
oveq2 |
|- ( q = E -> ( C x.s q ) = ( C x.s E ) ) |
| 63 |
61 62
|
oveq12d |
|- ( q = E -> ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) |
| 64 |
63
|
eqeq2d |
|- ( q = E -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) ) |
| 65 |
59 64
|
rspc2ev |
|- ( ( C e. ( _Left ` D ) /\ E e. ( _Left ` F ) /\ ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
| 66 |
54 65
|
mp3an3 |
|- ( ( C e. ( _Left ` D ) /\ E e. ( _Left ` F ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
| 67 |
44 53 66
|
syl2anc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
| 68 |
|
ovex |
|- ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. _V |
| 69 |
|
eqeq1 |
|- ( g = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) -> ( g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) ) |
| 70 |
69
|
2rexbidv |
|- ( g = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) -> ( E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) ) |
| 71 |
68 70
|
elab |
|- ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
| 72 |
67 71
|
sylibr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } ) |
| 73 |
|
elun1 |
|- ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 74 |
72 73
|
syl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 75 |
|
ovex |
|- ( D x.s F ) e. _V |
| 76 |
75
|
snid |
|- ( D x.s F ) e. { ( D x.s F ) } |
| 77 |
76
|
a1i |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( D x.s F ) e. { ( D x.s F ) } ) |
| 78 |
35 74 77
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) |
| 79 |
19
|
uneq2i |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` C ) +no ( bday ` F ) ) u. (/) ) |
| 80 |
|
un0 |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. (/) ) = ( ( bday ` C ) +no ( bday ` F ) ) |
| 81 |
79 80
|
eqtri |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` C ) +no ( bday ` F ) ) |
| 82 |
|
ssun1 |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) |
| 83 |
|
ssun2 |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 84 |
82 83
|
sstri |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 85 |
84 26
|
sstri |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 86 |
81 85
|
eqsstri |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 87 |
86
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
| 88 |
87
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 89 |
88
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 90 |
1 89
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 91 |
90 2 5
|
mulsproplem10 |
|- ( ph -> ( ( C x.s F ) e. No /\ ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
| 92 |
91
|
simp1d |
|- ( ph -> ( C x.s F ) e. No ) |
| 93 |
19
|
uneq2i |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` D ) +no ( bday ` E ) ) u. (/) ) |
| 94 |
|
un0 |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. (/) ) = ( ( bday ` D ) +no ( bday ` E ) ) |
| 95 |
93 94
|
eqtri |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` D ) +no ( bday ` E ) ) |
| 96 |
|
ssun2 |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) |
| 97 |
96 83
|
sstri |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 98 |
97 26
|
sstri |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 99 |
95 98
|
eqsstri |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 100 |
99
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
| 101 |
100
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 102 |
101
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 103 |
1 102
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 104 |
103 3 4
|
mulsproplem10 |
|- ( ph -> ( ( D x.s E ) e. No /\ ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
| 105 |
104
|
simp1d |
|- ( ph -> ( D x.s E ) e. No ) |
| 106 |
92 105
|
addscomd |
|- ( ph -> ( ( C x.s F ) +s ( D x.s E ) ) = ( ( D x.s E ) +s ( C x.s F ) ) ) |
| 107 |
106
|
oveq1d |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( C x.s E ) ) ) |
| 108 |
19
|
uneq2i |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` C ) +no ( bday ` E ) ) u. (/) ) |
| 109 |
|
un0 |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. (/) ) = ( ( bday ` C ) +no ( bday ` E ) ) |
| 110 |
108 109
|
eqtri |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` C ) +no ( bday ` E ) ) |
| 111 |
|
ssun1 |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) |
| 112 |
111 24
|
sstri |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 113 |
112 26
|
sstri |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 114 |
110 113
|
eqsstri |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 115 |
114
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
| 116 |
115
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 117 |
116
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 118 |
1 117
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 119 |
118 2 4
|
mulsproplem10 |
|- ( ph -> ( ( C x.s E ) e. No /\ ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
| 120 |
119
|
simp1d |
|- ( ph -> ( C x.s E ) e. No ) |
| 121 |
105 92 120
|
addsubsassd |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( C x.s E ) ) = ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ) |
| 122 |
107 121
|
eqtrd |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ) |
| 123 |
122
|
breq1d |
|- ( ph -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) |
| 124 |
92 120
|
subscld |
|- ( ph -> ( ( C x.s F ) -s ( C x.s E ) ) e. No ) |
| 125 |
33
|
simp1d |
|- ( ph -> ( D x.s F ) e. No ) |
| 126 |
105 124 125
|
sltaddsub2d |
|- ( ph -> ( ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 127 |
123 126
|
bitrd |
|- ( ph -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 129 |
78 128
|
mpbid |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 130 |
129
|
anassrs |
|- ( ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) /\ ( bday ` E ) e. ( bday ` F ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 131 |
104
|
simp3d |
|- ( ph -> { ( D x.s E ) } < |
| 132 |
131
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> { ( D x.s E ) } < |
| 133 |
|
ovex |
|- ( D x.s E ) e. _V |
| 134 |
133
|
snid |
|- ( D x.s E ) e. { ( D x.s E ) } |
| 135 |
134
|
a1i |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D x.s E ) e. { ( D x.s E ) } ) |
| 136 |
|
simprl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` C ) e. ( bday ` D ) ) |
| 137 |
2
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. No ) |
| 138 |
37 137 39
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
| 139 |
136 138
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. ( _Old ` ( bday ` D ) ) ) |
| 140 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C |
| 141 |
139 140 43
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. ( _Left ` D ) ) |
| 142 |
|
simprr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` F ) e. ( bday ` E ) ) |
| 143 |
|
bdayelon |
|- ( bday ` E ) e. On |
| 144 |
5
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. No ) |
| 145 |
|
oldbday |
|- ( ( ( bday ` E ) e. On /\ F e. No ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
| 146 |
143 144 145
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
| 147 |
142 146
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Old ` ( bday ` E ) ) ) |
| 148 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E |
| 149 |
|
elright |
|- ( F e. ( _Right ` E ) <-> ( F e. ( _Old ` ( bday ` E ) ) /\ E |
| 150 |
147 148 149
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Right ` E ) ) |
| 151 |
|
eqid |
|- ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) |
| 152 |
|
oveq1 |
|- ( t = C -> ( t x.s E ) = ( C x.s E ) ) |
| 153 |
152
|
oveq1d |
|- ( t = C -> ( ( t x.s E ) +s ( D x.s u ) ) = ( ( C x.s E ) +s ( D x.s u ) ) ) |
| 154 |
|
oveq1 |
|- ( t = C -> ( t x.s u ) = ( C x.s u ) ) |
| 155 |
153 154
|
oveq12d |
|- ( t = C -> ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) ) |
| 156 |
155
|
eqeq2d |
|- ( t = C -> ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) ) ) |
| 157 |
|
oveq2 |
|- ( u = F -> ( D x.s u ) = ( D x.s F ) ) |
| 158 |
157
|
oveq2d |
|- ( u = F -> ( ( C x.s E ) +s ( D x.s u ) ) = ( ( C x.s E ) +s ( D x.s F ) ) ) |
| 159 |
|
oveq2 |
|- ( u = F -> ( C x.s u ) = ( C x.s F ) ) |
| 160 |
158 159
|
oveq12d |
|- ( u = F -> ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) |
| 161 |
160
|
eqeq2d |
|- ( u = F -> ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) ) |
| 162 |
156 161
|
rspc2ev |
|- ( ( C e. ( _Left ` D ) /\ F e. ( _Right ` E ) /\ ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
| 163 |
151 162
|
mp3an3 |
|- ( ( C e. ( _Left ` D ) /\ F e. ( _Right ` E ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
| 164 |
141 150 163
|
syl2anc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
| 165 |
|
ovex |
|- ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. _V |
| 166 |
|
eqeq1 |
|- ( i = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) -> ( i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) ) |
| 167 |
166
|
2rexbidv |
|- ( i = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) -> ( E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) ) |
| 168 |
165 167
|
elab |
|- ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } <-> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
| 169 |
164 168
|
sylibr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } ) |
| 170 |
|
elun1 |
|- ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. ( { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` D ) E. w e. ( _Left ` E ) j = ( ( ( v x.s E ) +s ( D x.s w ) ) -s ( v x.s w ) ) } ) ) |
| 171 |
169 170
|
syl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. ( { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` D ) E. w e. ( _Left ` E ) j = ( ( ( v x.s E ) +s ( D x.s w ) ) -s ( v x.s w ) ) } ) ) |
| 172 |
132 135 171
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D x.s E ) |
| 173 |
120 125
|
addscomd |
|- ( ph -> ( ( C x.s E ) +s ( D x.s F ) ) = ( ( D x.s F ) +s ( C x.s E ) ) ) |
| 174 |
173
|
oveq1d |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( C x.s F ) ) ) |
| 175 |
125 120 92
|
addsubsassd |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( C x.s F ) ) = ( ( D x.s F ) +s ( ( C x.s E ) -s ( C x.s F ) ) ) ) |
| 176 |
174 175
|
eqtrd |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( D x.s F ) +s ( ( C x.s E ) -s ( C x.s F ) ) ) ) |
| 177 |
176
|
breq2d |
|- ( ph -> ( ( D x.s E ) ( D x.s E ) |
| 178 |
120 92
|
subscld |
|- ( ph -> ( ( C x.s E ) -s ( C x.s F ) ) e. No ) |
| 179 |
105 125 178
|
sltsubadd2d |
|- ( ph -> ( ( ( D x.s E ) -s ( D x.s F ) ) ( D x.s E ) |
| 180 |
177 179
|
bitr4d |
|- ( ph -> ( ( D x.s E ) ( ( D x.s E ) -s ( D x.s F ) ) |
| 181 |
105 125 120 92
|
sltsubsub2bd |
|- ( ph -> ( ( ( D x.s E ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 182 |
180 181
|
bitrd |
|- ( ph -> ( ( D x.s E ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 183 |
182
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( D x.s E ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 184 |
172 183
|
mpbid |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 185 |
184
|
anassrs |
|- ( ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) /\ ( bday ` F ) e. ( bday ` E ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 186 |
9
|
adantr |
|- ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
| 187 |
130 185 186
|
mpjaodan |
|- ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 188 |
91
|
simp3d |
|- ( ph -> { ( C x.s F ) } < |
| 189 |
188
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> { ( C x.s F ) } < |
| 190 |
|
ovex |
|- ( C x.s F ) e. _V |
| 191 |
190
|
snid |
|- ( C x.s F ) e. { ( C x.s F ) } |
| 192 |
191
|
a1i |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C x.s F ) e. { ( C x.s F ) } ) |
| 193 |
|
simprl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` D ) e. ( bday ` C ) ) |
| 194 |
|
bdayelon |
|- ( bday ` C ) e. On |
| 195 |
3
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. No ) |
| 196 |
|
oldbday |
|- ( ( ( bday ` C ) e. On /\ D e. No ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
| 197 |
194 195 196
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
| 198 |
193 197
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. ( _Old ` ( bday ` C ) ) ) |
| 199 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C |
| 200 |
|
elright |
|- ( D e. ( _Right ` C ) <-> ( D e. ( _Old ` ( bday ` C ) ) /\ C |
| 201 |
198 199 200
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. ( _Right ` C ) ) |
| 202 |
|
simprr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` E ) e. ( bday ` F ) ) |
| 203 |
4
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. No ) |
| 204 |
46 203 48
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
| 205 |
202 204
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Old ` ( bday ` F ) ) ) |
| 206 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E |
| 207 |
205 206 52
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Left ` F ) ) |
| 208 |
|
eqid |
|- ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) |
| 209 |
|
oveq1 |
|- ( v = D -> ( v x.s F ) = ( D x.s F ) ) |
| 210 |
209
|
oveq1d |
|- ( v = D -> ( ( v x.s F ) +s ( C x.s w ) ) = ( ( D x.s F ) +s ( C x.s w ) ) ) |
| 211 |
|
oveq1 |
|- ( v = D -> ( v x.s w ) = ( D x.s w ) ) |
| 212 |
210 211
|
oveq12d |
|- ( v = D -> ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) ) |
| 213 |
212
|
eqeq2d |
|- ( v = D -> ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) ) ) |
| 214 |
|
oveq2 |
|- ( w = E -> ( C x.s w ) = ( C x.s E ) ) |
| 215 |
214
|
oveq2d |
|- ( w = E -> ( ( D x.s F ) +s ( C x.s w ) ) = ( ( D x.s F ) +s ( C x.s E ) ) ) |
| 216 |
|
oveq2 |
|- ( w = E -> ( D x.s w ) = ( D x.s E ) ) |
| 217 |
215 216
|
oveq12d |
|- ( w = E -> ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) |
| 218 |
217
|
eqeq2d |
|- ( w = E -> ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) ) |
| 219 |
213 218
|
rspc2ev |
|- ( ( D e. ( _Right ` C ) /\ E e. ( _Left ` F ) /\ ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
| 220 |
208 219
|
mp3an3 |
|- ( ( D e. ( _Right ` C ) /\ E e. ( _Left ` F ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
| 221 |
201 207 220
|
syl2anc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
| 222 |
|
ovex |
|- ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. _V |
| 223 |
|
eqeq1 |
|- ( j = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) -> ( j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) ) |
| 224 |
223
|
2rexbidv |
|- ( j = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) -> ( E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) ) |
| 225 |
222 224
|
elab |
|- ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } <-> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
| 226 |
221 225
|
sylibr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) |
| 227 |
|
elun2 |
|- ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. ( { i | E. t e. ( _Left ` C ) E. u e. ( _Right ` F ) i = ( ( ( t x.s F ) +s ( C x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) ) |
| 228 |
226 227
|
syl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. ( { i | E. t e. ( _Left ` C ) E. u e. ( _Right ` F ) i = ( ( ( t x.s F ) +s ( C x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) ) |
| 229 |
189 192 228
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C x.s F ) |
| 230 |
125 120
|
addscomd |
|- ( ph -> ( ( D x.s F ) +s ( C x.s E ) ) = ( ( C x.s E ) +s ( D x.s F ) ) ) |
| 231 |
230
|
oveq1d |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( D x.s E ) ) ) |
| 232 |
120 125 105
|
addsubsassd |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( D x.s E ) ) = ( ( C x.s E ) +s ( ( D x.s F ) -s ( D x.s E ) ) ) ) |
| 233 |
231 232
|
eqtrd |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( C x.s E ) +s ( ( D x.s F ) -s ( D x.s E ) ) ) ) |
| 234 |
233
|
breq2d |
|- ( ph -> ( ( C x.s F ) ( C x.s F ) |
| 235 |
125 105
|
subscld |
|- ( ph -> ( ( D x.s F ) -s ( D x.s E ) ) e. No ) |
| 236 |
92 120 235
|
sltsubadd2d |
|- ( ph -> ( ( ( C x.s F ) -s ( C x.s E ) ) ( C x.s F ) |
| 237 |
234 236
|
bitr4d |
|- ( ph -> ( ( C x.s F ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 238 |
237
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 239 |
229 238
|
mpbid |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 240 |
239
|
anassrs |
|- ( ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) /\ ( bday ` E ) e. ( bday ` F ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 241 |
119
|
simp2d |
|- ( ph -> ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
| 242 |
241
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
| 243 |
|
simprl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` D ) e. ( bday ` C ) ) |
| 244 |
3
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. No ) |
| 245 |
194 244 196
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
| 246 |
243 245
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. ( _Old ` ( bday ` C ) ) ) |
| 247 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C |
| 248 |
246 247 200
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. ( _Right ` C ) ) |
| 249 |
|
simprr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` F ) e. ( bday ` E ) ) |
| 250 |
5
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. No ) |
| 251 |
143 250 145
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
| 252 |
249 251
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Old ` ( bday ` E ) ) ) |
| 253 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E |
| 254 |
252 253 149
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Right ` E ) ) |
| 255 |
|
eqid |
|- ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) |
| 256 |
|
oveq1 |
|- ( r = D -> ( r x.s E ) = ( D x.s E ) ) |
| 257 |
256
|
oveq1d |
|- ( r = D -> ( ( r x.s E ) +s ( C x.s s ) ) = ( ( D x.s E ) +s ( C x.s s ) ) ) |
| 258 |
|
oveq1 |
|- ( r = D -> ( r x.s s ) = ( D x.s s ) ) |
| 259 |
257 258
|
oveq12d |
|- ( r = D -> ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) ) |
| 260 |
259
|
eqeq2d |
|- ( r = D -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) ) ) |
| 261 |
|
oveq2 |
|- ( s = F -> ( C x.s s ) = ( C x.s F ) ) |
| 262 |
261
|
oveq2d |
|- ( s = F -> ( ( D x.s E ) +s ( C x.s s ) ) = ( ( D x.s E ) +s ( C x.s F ) ) ) |
| 263 |
|
oveq2 |
|- ( s = F -> ( D x.s s ) = ( D x.s F ) ) |
| 264 |
262 263
|
oveq12d |
|- ( s = F -> ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) |
| 265 |
264
|
eqeq2d |
|- ( s = F -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) ) |
| 266 |
260 265
|
rspc2ev |
|- ( ( D e. ( _Right ` C ) /\ F e. ( _Right ` E ) /\ ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
| 267 |
255 266
|
mp3an3 |
|- ( ( D e. ( _Right ` C ) /\ F e. ( _Right ` E ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
| 268 |
248 254 267
|
syl2anc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
| 269 |
|
ovex |
|- ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. _V |
| 270 |
|
eqeq1 |
|- ( h = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) -> ( h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) ) |
| 271 |
270
|
2rexbidv |
|- ( h = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) -> ( E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) ) |
| 272 |
269 271
|
elab |
|- ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
| 273 |
268 272
|
sylibr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) |
| 274 |
|
elun2 |
|- ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 275 |
273 274
|
syl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 276 |
|
ovex |
|- ( C x.s E ) e. _V |
| 277 |
276
|
snid |
|- ( C x.s E ) e. { ( C x.s E ) } |
| 278 |
277
|
a1i |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( C x.s E ) e. { ( C x.s E ) } ) |
| 279 |
242 275 278
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) |
| 280 |
105 92
|
addscomd |
|- ( ph -> ( ( D x.s E ) +s ( C x.s F ) ) = ( ( C x.s F ) +s ( D x.s E ) ) ) |
| 281 |
280
|
oveq1d |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( D x.s F ) ) ) |
| 282 |
92 105 125
|
addsubsassd |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( D x.s F ) ) = ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ) |
| 283 |
281 282
|
eqtrd |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ) |
| 284 |
283
|
breq1d |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) |
| 285 |
105 125
|
subscld |
|- ( ph -> ( ( D x.s E ) -s ( D x.s F ) ) e. No ) |
| 286 |
92 285 120
|
sltaddsub2d |
|- ( ph -> ( ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ( ( D x.s E ) -s ( D x.s F ) ) |
| 287 |
284 286
|
bitrd |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( D x.s E ) -s ( D x.s F ) ) |
| 288 |
287 181
|
bitrd |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 289 |
288
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 290 |
279 289
|
mpbid |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 291 |
290
|
anassrs |
|- ( ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) /\ ( bday ` F ) e. ( bday ` E ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 292 |
9
|
adantr |
|- ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
| 293 |
240 291 292
|
mpjaodan |
|- ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 294 |
187 293 8
|
mpjaodan |
|- ( ph -> ( ( C x.s F ) -s ( C x.s E ) ) |