| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsproplem.1 |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 2 |
|
mulsproplem.2 |
|- ( ph -> C e. No ) |
| 3 |
|
mulsproplem.3 |
|- ( ph -> D e. No ) |
| 4 |
|
mulsproplem.4 |
|- ( ph -> E e. No ) |
| 5 |
|
mulsproplem.5 |
|- ( ph -> F e. No ) |
| 6 |
|
mulsproplem.6 |
|- ( ph -> C |
| 7 |
|
mulsproplem.7 |
|- ( ph -> E |
| 8 |
|
mulsproplem12.1 |
|- ( ph -> ( ( bday ` C ) e. ( bday ` D ) \/ ( bday ` D ) e. ( bday ` C ) ) ) |
| 9 |
|
mulsproplem12.2 |
|- ( ph -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
| 10 |
|
unidm |
|- ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) = ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) |
| 11 |
|
unidm |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) = ( ( bday ` 0s ) +no ( bday ` 0s ) ) |
| 12 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
| 13 |
12 12
|
oveq12i |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) ) |
| 14 |
|
0elon |
|- (/) e. On |
| 15 |
|
naddrid |
|- ( (/) e. On -> ( (/) +no (/) ) = (/) ) |
| 16 |
14 15
|
ax-mp |
|- ( (/) +no (/) ) = (/) |
| 17 |
13 16
|
eqtri |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/) |
| 18 |
11 17
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) = (/) |
| 19 |
10 18
|
eqtri |
|- ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) = (/) |
| 20 |
19
|
uneq2i |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` D ) +no ( bday ` F ) ) u. (/) ) |
| 21 |
|
un0 |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. (/) ) = ( ( bday ` D ) +no ( bday ` F ) ) |
| 22 |
20 21
|
eqtri |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` D ) +no ( bday ` F ) ) |
| 23 |
|
ssun2 |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) |
| 24 |
|
ssun1 |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 25 |
23 24
|
sstri |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 26 |
|
ssun2 |
|- ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 27 |
25 26
|
sstri |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 28 |
22 27
|
eqsstri |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 29 |
28
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
| 30 |
29
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 31 |
30
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 32 |
1 31
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 33 |
32 3 5
|
mulsproplem10 |
|- ( ph -> ( ( D x.s F ) e. No /\ ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
| 34 |
33
|
simp2d |
|- ( ph -> ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
| 35 |
34
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
| 36 |
|
simprl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` C ) e. ( bday ` D ) ) |
| 37 |
|
bdayelon |
|- ( bday ` D ) e. On |
| 38 |
2
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. No ) |
| 39 |
|
oldbday |
|- ( ( ( bday ` D ) e. On /\ C e. No ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
| 40 |
37 38 39
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
| 41 |
36 40
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. ( _Old ` ( bday ` D ) ) ) |
| 42 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C |
| 43 |
|
breq1 |
|- ( x = C -> ( x C |
| 44 |
|
leftval |
|- ( _Left ` D ) = { x e. ( _Old ` ( bday ` D ) ) | x |
| 45 |
43 44
|
elrab2 |
|- ( C e. ( _Left ` D ) <-> ( C e. ( _Old ` ( bday ` D ) ) /\ C |
| 46 |
41 42 45
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. ( _Left ` D ) ) |
| 47 |
|
simprr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` E ) e. ( bday ` F ) ) |
| 48 |
|
bdayelon |
|- ( bday ` F ) e. On |
| 49 |
4
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. No ) |
| 50 |
|
oldbday |
|- ( ( ( bday ` F ) e. On /\ E e. No ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
| 51 |
48 49 50
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
| 52 |
47 51
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Old ` ( bday ` F ) ) ) |
| 53 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E |
| 54 |
|
breq1 |
|- ( x = E -> ( x E |
| 55 |
|
leftval |
|- ( _Left ` F ) = { x e. ( _Old ` ( bday ` F ) ) | x |
| 56 |
54 55
|
elrab2 |
|- ( E e. ( _Left ` F ) <-> ( E e. ( _Old ` ( bday ` F ) ) /\ E |
| 57 |
52 53 56
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Left ` F ) ) |
| 58 |
|
eqid |
|- ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) |
| 59 |
|
oveq1 |
|- ( p = C -> ( p x.s F ) = ( C x.s F ) ) |
| 60 |
59
|
oveq1d |
|- ( p = C -> ( ( p x.s F ) +s ( D x.s q ) ) = ( ( C x.s F ) +s ( D x.s q ) ) ) |
| 61 |
|
oveq1 |
|- ( p = C -> ( p x.s q ) = ( C x.s q ) ) |
| 62 |
60 61
|
oveq12d |
|- ( p = C -> ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) ) |
| 63 |
62
|
eqeq2d |
|- ( p = C -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) ) ) |
| 64 |
|
oveq2 |
|- ( q = E -> ( D x.s q ) = ( D x.s E ) ) |
| 65 |
64
|
oveq2d |
|- ( q = E -> ( ( C x.s F ) +s ( D x.s q ) ) = ( ( C x.s F ) +s ( D x.s E ) ) ) |
| 66 |
|
oveq2 |
|- ( q = E -> ( C x.s q ) = ( C x.s E ) ) |
| 67 |
65 66
|
oveq12d |
|- ( q = E -> ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) |
| 68 |
67
|
eqeq2d |
|- ( q = E -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) ) |
| 69 |
63 68
|
rspc2ev |
|- ( ( C e. ( _Left ` D ) /\ E e. ( _Left ` F ) /\ ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
| 70 |
58 69
|
mp3an3 |
|- ( ( C e. ( _Left ` D ) /\ E e. ( _Left ` F ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
| 71 |
46 57 70
|
syl2anc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
| 72 |
|
ovex |
|- ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. _V |
| 73 |
|
eqeq1 |
|- ( g = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) -> ( g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) ) |
| 74 |
73
|
2rexbidv |
|- ( g = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) -> ( E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) ) |
| 75 |
72 74
|
elab |
|- ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
| 76 |
71 75
|
sylibr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } ) |
| 77 |
|
elun1 |
|- ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 78 |
76 77
|
syl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 79 |
|
ovex |
|- ( D x.s F ) e. _V |
| 80 |
79
|
snid |
|- ( D x.s F ) e. { ( D x.s F ) } |
| 81 |
80
|
a1i |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( D x.s F ) e. { ( D x.s F ) } ) |
| 82 |
35 78 81
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) |
| 83 |
19
|
uneq2i |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` C ) +no ( bday ` F ) ) u. (/) ) |
| 84 |
|
un0 |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. (/) ) = ( ( bday ` C ) +no ( bday ` F ) ) |
| 85 |
83 84
|
eqtri |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` C ) +no ( bday ` F ) ) |
| 86 |
|
ssun1 |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) |
| 87 |
|
ssun2 |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 88 |
86 87
|
sstri |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 89 |
88 26
|
sstri |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 90 |
85 89
|
eqsstri |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 91 |
90
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
| 92 |
91
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 93 |
92
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 94 |
1 93
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 95 |
94 2 5
|
mulsproplem10 |
|- ( ph -> ( ( C x.s F ) e. No /\ ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
| 96 |
95
|
simp1d |
|- ( ph -> ( C x.s F ) e. No ) |
| 97 |
19
|
uneq2i |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` D ) +no ( bday ` E ) ) u. (/) ) |
| 98 |
|
un0 |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. (/) ) = ( ( bday ` D ) +no ( bday ` E ) ) |
| 99 |
97 98
|
eqtri |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` D ) +no ( bday ` E ) ) |
| 100 |
|
ssun2 |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) |
| 101 |
100 87
|
sstri |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 102 |
101 26
|
sstri |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 103 |
99 102
|
eqsstri |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 104 |
103
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
| 105 |
104
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 106 |
105
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 107 |
1 106
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 108 |
107 3 4
|
mulsproplem10 |
|- ( ph -> ( ( D x.s E ) e. No /\ ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
| 109 |
108
|
simp1d |
|- ( ph -> ( D x.s E ) e. No ) |
| 110 |
96 109
|
addscomd |
|- ( ph -> ( ( C x.s F ) +s ( D x.s E ) ) = ( ( D x.s E ) +s ( C x.s F ) ) ) |
| 111 |
110
|
oveq1d |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( C x.s E ) ) ) |
| 112 |
19
|
uneq2i |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` C ) +no ( bday ` E ) ) u. (/) ) |
| 113 |
|
un0 |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. (/) ) = ( ( bday ` C ) +no ( bday ` E ) ) |
| 114 |
112 113
|
eqtri |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` C ) +no ( bday ` E ) ) |
| 115 |
|
ssun1 |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) |
| 116 |
115 24
|
sstri |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
| 117 |
116 26
|
sstri |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 118 |
114 117
|
eqsstri |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
| 119 |
118
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
| 120 |
119
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 121 |
120
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 122 |
1 121
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
| 123 |
122 2 4
|
mulsproplem10 |
|- ( ph -> ( ( C x.s E ) e. No /\ ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
| 124 |
123
|
simp1d |
|- ( ph -> ( C x.s E ) e. No ) |
| 125 |
109 96 124
|
addsubsassd |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( C x.s E ) ) = ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ) |
| 126 |
111 125
|
eqtrd |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ) |
| 127 |
126
|
breq1d |
|- ( ph -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) |
| 128 |
96 124
|
subscld |
|- ( ph -> ( ( C x.s F ) -s ( C x.s E ) ) e. No ) |
| 129 |
33
|
simp1d |
|- ( ph -> ( D x.s F ) e. No ) |
| 130 |
109 128 129
|
sltaddsub2d |
|- ( ph -> ( ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 131 |
127 130
|
bitrd |
|- ( ph -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 132 |
131
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 133 |
82 132
|
mpbid |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 134 |
133
|
anassrs |
|- ( ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) /\ ( bday ` E ) e. ( bday ` F ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 135 |
108
|
simp3d |
|- ( ph -> { ( D x.s E ) } < |
| 136 |
135
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> { ( D x.s E ) } < |
| 137 |
|
ovex |
|- ( D x.s E ) e. _V |
| 138 |
137
|
snid |
|- ( D x.s E ) e. { ( D x.s E ) } |
| 139 |
138
|
a1i |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D x.s E ) e. { ( D x.s E ) } ) |
| 140 |
|
simprl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` C ) e. ( bday ` D ) ) |
| 141 |
2
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. No ) |
| 142 |
37 141 39
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
| 143 |
140 142
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. ( _Old ` ( bday ` D ) ) ) |
| 144 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C |
| 145 |
143 144 45
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. ( _Left ` D ) ) |
| 146 |
|
simprr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` F ) e. ( bday ` E ) ) |
| 147 |
|
bdayelon |
|- ( bday ` E ) e. On |
| 148 |
5
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. No ) |
| 149 |
|
oldbday |
|- ( ( ( bday ` E ) e. On /\ F e. No ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
| 150 |
147 148 149
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
| 151 |
146 150
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Old ` ( bday ` E ) ) ) |
| 152 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E |
| 153 |
|
breq2 |
|- ( x = F -> ( E E |
| 154 |
|
rightval |
|- ( _Right ` E ) = { x e. ( _Old ` ( bday ` E ) ) | E |
| 155 |
153 154
|
elrab2 |
|- ( F e. ( _Right ` E ) <-> ( F e. ( _Old ` ( bday ` E ) ) /\ E |
| 156 |
151 152 155
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Right ` E ) ) |
| 157 |
|
eqid |
|- ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) |
| 158 |
|
oveq1 |
|- ( t = C -> ( t x.s E ) = ( C x.s E ) ) |
| 159 |
158
|
oveq1d |
|- ( t = C -> ( ( t x.s E ) +s ( D x.s u ) ) = ( ( C x.s E ) +s ( D x.s u ) ) ) |
| 160 |
|
oveq1 |
|- ( t = C -> ( t x.s u ) = ( C x.s u ) ) |
| 161 |
159 160
|
oveq12d |
|- ( t = C -> ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) ) |
| 162 |
161
|
eqeq2d |
|- ( t = C -> ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) ) ) |
| 163 |
|
oveq2 |
|- ( u = F -> ( D x.s u ) = ( D x.s F ) ) |
| 164 |
163
|
oveq2d |
|- ( u = F -> ( ( C x.s E ) +s ( D x.s u ) ) = ( ( C x.s E ) +s ( D x.s F ) ) ) |
| 165 |
|
oveq2 |
|- ( u = F -> ( C x.s u ) = ( C x.s F ) ) |
| 166 |
164 165
|
oveq12d |
|- ( u = F -> ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) |
| 167 |
166
|
eqeq2d |
|- ( u = F -> ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) ) |
| 168 |
162 167
|
rspc2ev |
|- ( ( C e. ( _Left ` D ) /\ F e. ( _Right ` E ) /\ ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
| 169 |
157 168
|
mp3an3 |
|- ( ( C e. ( _Left ` D ) /\ F e. ( _Right ` E ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
| 170 |
145 156 169
|
syl2anc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
| 171 |
|
ovex |
|- ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. _V |
| 172 |
|
eqeq1 |
|- ( i = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) -> ( i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) ) |
| 173 |
172
|
2rexbidv |
|- ( i = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) -> ( E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) ) |
| 174 |
171 173
|
elab |
|- ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } <-> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
| 175 |
170 174
|
sylibr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } ) |
| 176 |
|
elun1 |
|- ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. ( { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` D ) E. w e. ( _Left ` E ) j = ( ( ( v x.s E ) +s ( D x.s w ) ) -s ( v x.s w ) ) } ) ) |
| 177 |
175 176
|
syl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. ( { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` D ) E. w e. ( _Left ` E ) j = ( ( ( v x.s E ) +s ( D x.s w ) ) -s ( v x.s w ) ) } ) ) |
| 178 |
136 139 177
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D x.s E ) |
| 179 |
124 129
|
addscomd |
|- ( ph -> ( ( C x.s E ) +s ( D x.s F ) ) = ( ( D x.s F ) +s ( C x.s E ) ) ) |
| 180 |
179
|
oveq1d |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( C x.s F ) ) ) |
| 181 |
129 124 96
|
addsubsassd |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( C x.s F ) ) = ( ( D x.s F ) +s ( ( C x.s E ) -s ( C x.s F ) ) ) ) |
| 182 |
180 181
|
eqtrd |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( D x.s F ) +s ( ( C x.s E ) -s ( C x.s F ) ) ) ) |
| 183 |
182
|
breq2d |
|- ( ph -> ( ( D x.s E ) ( D x.s E ) |
| 184 |
124 96
|
subscld |
|- ( ph -> ( ( C x.s E ) -s ( C x.s F ) ) e. No ) |
| 185 |
109 129 184
|
sltsubadd2d |
|- ( ph -> ( ( ( D x.s E ) -s ( D x.s F ) ) ( D x.s E ) |
| 186 |
183 185
|
bitr4d |
|- ( ph -> ( ( D x.s E ) ( ( D x.s E ) -s ( D x.s F ) ) |
| 187 |
109 129 124 96
|
sltsubsub2bd |
|- ( ph -> ( ( ( D x.s E ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 188 |
186 187
|
bitrd |
|- ( ph -> ( ( D x.s E ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 189 |
188
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( D x.s E ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 190 |
178 189
|
mpbid |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 191 |
190
|
anassrs |
|- ( ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) /\ ( bday ` F ) e. ( bday ` E ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 192 |
9
|
adantr |
|- ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
| 193 |
134 191 192
|
mpjaodan |
|- ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 194 |
95
|
simp3d |
|- ( ph -> { ( C x.s F ) } < |
| 195 |
194
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> { ( C x.s F ) } < |
| 196 |
|
ovex |
|- ( C x.s F ) e. _V |
| 197 |
196
|
snid |
|- ( C x.s F ) e. { ( C x.s F ) } |
| 198 |
197
|
a1i |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C x.s F ) e. { ( C x.s F ) } ) |
| 199 |
|
simprl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` D ) e. ( bday ` C ) ) |
| 200 |
|
bdayelon |
|- ( bday ` C ) e. On |
| 201 |
3
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. No ) |
| 202 |
|
oldbday |
|- ( ( ( bday ` C ) e. On /\ D e. No ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
| 203 |
200 201 202
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
| 204 |
199 203
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. ( _Old ` ( bday ` C ) ) ) |
| 205 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C |
| 206 |
|
breq2 |
|- ( x = D -> ( C C |
| 207 |
|
rightval |
|- ( _Right ` C ) = { x e. ( _Old ` ( bday ` C ) ) | C |
| 208 |
206 207
|
elrab2 |
|- ( D e. ( _Right ` C ) <-> ( D e. ( _Old ` ( bday ` C ) ) /\ C |
| 209 |
204 205 208
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. ( _Right ` C ) ) |
| 210 |
|
simprr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` E ) e. ( bday ` F ) ) |
| 211 |
4
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. No ) |
| 212 |
48 211 50
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
| 213 |
210 212
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Old ` ( bday ` F ) ) ) |
| 214 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E |
| 215 |
213 214 56
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Left ` F ) ) |
| 216 |
|
eqid |
|- ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) |
| 217 |
|
oveq1 |
|- ( v = D -> ( v x.s F ) = ( D x.s F ) ) |
| 218 |
217
|
oveq1d |
|- ( v = D -> ( ( v x.s F ) +s ( C x.s w ) ) = ( ( D x.s F ) +s ( C x.s w ) ) ) |
| 219 |
|
oveq1 |
|- ( v = D -> ( v x.s w ) = ( D x.s w ) ) |
| 220 |
218 219
|
oveq12d |
|- ( v = D -> ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) ) |
| 221 |
220
|
eqeq2d |
|- ( v = D -> ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) ) ) |
| 222 |
|
oveq2 |
|- ( w = E -> ( C x.s w ) = ( C x.s E ) ) |
| 223 |
222
|
oveq2d |
|- ( w = E -> ( ( D x.s F ) +s ( C x.s w ) ) = ( ( D x.s F ) +s ( C x.s E ) ) ) |
| 224 |
|
oveq2 |
|- ( w = E -> ( D x.s w ) = ( D x.s E ) ) |
| 225 |
223 224
|
oveq12d |
|- ( w = E -> ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) |
| 226 |
225
|
eqeq2d |
|- ( w = E -> ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) ) |
| 227 |
221 226
|
rspc2ev |
|- ( ( D e. ( _Right ` C ) /\ E e. ( _Left ` F ) /\ ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
| 228 |
216 227
|
mp3an3 |
|- ( ( D e. ( _Right ` C ) /\ E e. ( _Left ` F ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
| 229 |
209 215 228
|
syl2anc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
| 230 |
|
ovex |
|- ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. _V |
| 231 |
|
eqeq1 |
|- ( j = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) -> ( j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) ) |
| 232 |
231
|
2rexbidv |
|- ( j = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) -> ( E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) ) |
| 233 |
230 232
|
elab |
|- ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } <-> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
| 234 |
229 233
|
sylibr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) |
| 235 |
|
elun2 |
|- ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. ( { i | E. t e. ( _Left ` C ) E. u e. ( _Right ` F ) i = ( ( ( t x.s F ) +s ( C x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) ) |
| 236 |
234 235
|
syl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. ( { i | E. t e. ( _Left ` C ) E. u e. ( _Right ` F ) i = ( ( ( t x.s F ) +s ( C x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) ) |
| 237 |
195 198 236
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C x.s F ) |
| 238 |
129 124
|
addscomd |
|- ( ph -> ( ( D x.s F ) +s ( C x.s E ) ) = ( ( C x.s E ) +s ( D x.s F ) ) ) |
| 239 |
238
|
oveq1d |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( D x.s E ) ) ) |
| 240 |
124 129 109
|
addsubsassd |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( D x.s E ) ) = ( ( C x.s E ) +s ( ( D x.s F ) -s ( D x.s E ) ) ) ) |
| 241 |
239 240
|
eqtrd |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( C x.s E ) +s ( ( D x.s F ) -s ( D x.s E ) ) ) ) |
| 242 |
241
|
breq2d |
|- ( ph -> ( ( C x.s F ) ( C x.s F ) |
| 243 |
129 109
|
subscld |
|- ( ph -> ( ( D x.s F ) -s ( D x.s E ) ) e. No ) |
| 244 |
96 124 243
|
sltsubadd2d |
|- ( ph -> ( ( ( C x.s F ) -s ( C x.s E ) ) ( C x.s F ) |
| 245 |
242 244
|
bitr4d |
|- ( ph -> ( ( C x.s F ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 246 |
245
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 247 |
237 246
|
mpbid |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 248 |
247
|
anassrs |
|- ( ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) /\ ( bday ` E ) e. ( bday ` F ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 249 |
123
|
simp2d |
|- ( ph -> ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
| 250 |
249
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
| 251 |
|
simprl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` D ) e. ( bday ` C ) ) |
| 252 |
3
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. No ) |
| 253 |
200 252 202
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
| 254 |
251 253
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. ( _Old ` ( bday ` C ) ) ) |
| 255 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C |
| 256 |
254 255 208
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. ( _Right ` C ) ) |
| 257 |
|
simprr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` F ) e. ( bday ` E ) ) |
| 258 |
5
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. No ) |
| 259 |
147 258 149
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
| 260 |
257 259
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Old ` ( bday ` E ) ) ) |
| 261 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E |
| 262 |
260 261 155
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Right ` E ) ) |
| 263 |
|
eqid |
|- ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) |
| 264 |
|
oveq1 |
|- ( r = D -> ( r x.s E ) = ( D x.s E ) ) |
| 265 |
264
|
oveq1d |
|- ( r = D -> ( ( r x.s E ) +s ( C x.s s ) ) = ( ( D x.s E ) +s ( C x.s s ) ) ) |
| 266 |
|
oveq1 |
|- ( r = D -> ( r x.s s ) = ( D x.s s ) ) |
| 267 |
265 266
|
oveq12d |
|- ( r = D -> ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) ) |
| 268 |
267
|
eqeq2d |
|- ( r = D -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) ) ) |
| 269 |
|
oveq2 |
|- ( s = F -> ( C x.s s ) = ( C x.s F ) ) |
| 270 |
269
|
oveq2d |
|- ( s = F -> ( ( D x.s E ) +s ( C x.s s ) ) = ( ( D x.s E ) +s ( C x.s F ) ) ) |
| 271 |
|
oveq2 |
|- ( s = F -> ( D x.s s ) = ( D x.s F ) ) |
| 272 |
270 271
|
oveq12d |
|- ( s = F -> ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) |
| 273 |
272
|
eqeq2d |
|- ( s = F -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) ) |
| 274 |
268 273
|
rspc2ev |
|- ( ( D e. ( _Right ` C ) /\ F e. ( _Right ` E ) /\ ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
| 275 |
263 274
|
mp3an3 |
|- ( ( D e. ( _Right ` C ) /\ F e. ( _Right ` E ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
| 276 |
256 262 275
|
syl2anc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
| 277 |
|
ovex |
|- ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. _V |
| 278 |
|
eqeq1 |
|- ( h = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) -> ( h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) ) |
| 279 |
278
|
2rexbidv |
|- ( h = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) -> ( E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) ) |
| 280 |
277 279
|
elab |
|- ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
| 281 |
276 280
|
sylibr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) |
| 282 |
|
elun2 |
|- ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 283 |
281 282
|
syl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) ) |
| 284 |
|
ovex |
|- ( C x.s E ) e. _V |
| 285 |
284
|
snid |
|- ( C x.s E ) e. { ( C x.s E ) } |
| 286 |
285
|
a1i |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( C x.s E ) e. { ( C x.s E ) } ) |
| 287 |
250 283 286
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) |
| 288 |
109 96
|
addscomd |
|- ( ph -> ( ( D x.s E ) +s ( C x.s F ) ) = ( ( C x.s F ) +s ( D x.s E ) ) ) |
| 289 |
288
|
oveq1d |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( D x.s F ) ) ) |
| 290 |
96 109 129
|
addsubsassd |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( D x.s F ) ) = ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ) |
| 291 |
289 290
|
eqtrd |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ) |
| 292 |
291
|
breq1d |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) |
| 293 |
109 129
|
subscld |
|- ( ph -> ( ( D x.s E ) -s ( D x.s F ) ) e. No ) |
| 294 |
96 293 124
|
sltaddsub2d |
|- ( ph -> ( ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ( ( D x.s E ) -s ( D x.s F ) ) |
| 295 |
292 294
|
bitrd |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( D x.s E ) -s ( D x.s F ) ) |
| 296 |
295 187
|
bitrd |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 297 |
296
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
| 298 |
287 297
|
mpbid |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 299 |
298
|
anassrs |
|- ( ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) /\ ( bday ` F ) e. ( bday ` E ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 300 |
9
|
adantr |
|- ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
| 301 |
248 299 300
|
mpjaodan |
|- ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
| 302 |
193 301 8
|
mpjaodan |
|- ( ph -> ( ( C x.s F ) -s ( C x.s E ) ) |