Metamath Proof Explorer


Theorem nmoix

Description: The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses nmofval.1 N=SnormOpT
nmoi.2 V=BaseS
nmoi.3 L=normS
nmoi.4 M=normT
Assertion nmoix SNrmGrpTNrmGrpFSGrpHomTXVMFXNF𝑒LX

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 nmoi.2 V=BaseS
3 nmoi.3 L=normS
4 nmoi.4 M=normT
5 1 isnghm2 SNrmGrpTNrmGrpFSGrpHomTFSNGHomTNF
6 5 biimpar SNrmGrpTNrmGrpFSGrpHomTNFFSNGHomT
7 1 2 3 4 nmoi FSNGHomTXVMFXNFLX
8 6 7 sylan SNrmGrpTNrmGrpFSGrpHomTNFXVMFXNFLX
9 8 an32s SNrmGrpTNrmGrpFSGrpHomTXVNFMFXNFLX
10 id NFNF
11 2 3 nmcl SNrmGrpXVLX
12 11 3ad2antl1 SNrmGrpTNrmGrpFSGrpHomTXVLX
13 rexmul NFLXNF𝑒LX=NFLX
14 10 12 13 syl2anr SNrmGrpTNrmGrpFSGrpHomTXVNFNF𝑒LX=NFLX
15 9 14 breqtrrd SNrmGrpTNrmGrpFSGrpHomTXVNFMFXNF𝑒LX
16 fveq2 X=0SFX=F0S
17 16 fveq2d X=0SMFX=MF0S
18 fveq2 X=0SLX=L0S
19 18 oveq2d X=0S+∞𝑒LX=+∞𝑒L0S
20 17 19 breq12d X=0SMFX+∞𝑒LXMF0S+∞𝑒L0S
21 simpl2 SNrmGrpTNrmGrpFSGrpHomTXVTNrmGrp
22 eqid BaseT=BaseT
23 2 22 ghmf FSGrpHomTF:VBaseT
24 23 ffvelcdmda FSGrpHomTXVFXBaseT
25 24 3ad2antl3 SNrmGrpTNrmGrpFSGrpHomTXVFXBaseT
26 22 4 nmcl TNrmGrpFXBaseTMFX
27 21 25 26 syl2anc SNrmGrpTNrmGrpFSGrpHomTXVMFX
28 27 adantr SNrmGrpTNrmGrpFSGrpHomTXVX0SMFX
29 28 rexrd SNrmGrpTNrmGrpFSGrpHomTXVX0SMFX*
30 pnfge MFX*MFX+∞
31 29 30 syl SNrmGrpTNrmGrpFSGrpHomTXVX0SMFX+∞
32 simp1 SNrmGrpTNrmGrpFSGrpHomTSNrmGrp
33 eqid 0S=0S
34 2 3 33 nmrpcl SNrmGrpXVX0SLX+
35 34 3expa SNrmGrpXVX0SLX+
36 32 35 sylanl1 SNrmGrpTNrmGrpFSGrpHomTXVX0SLX+
37 rpxr LX+LX*
38 rpgt0 LX+0<LX
39 xmulpnf2 LX*0<LX+∞𝑒LX=+∞
40 37 38 39 syl2anc LX++∞𝑒LX=+∞
41 36 40 syl SNrmGrpTNrmGrpFSGrpHomTXVX0S+∞𝑒LX=+∞
42 31 41 breqtrrd SNrmGrpTNrmGrpFSGrpHomTXVX0SMFX+∞𝑒LX
43 0le0 00
44 simpl3 SNrmGrpTNrmGrpFSGrpHomTXVFSGrpHomT
45 eqid 0T=0T
46 33 45 ghmid FSGrpHomTF0S=0T
47 44 46 syl SNrmGrpTNrmGrpFSGrpHomTXVF0S=0T
48 47 fveq2d SNrmGrpTNrmGrpFSGrpHomTXVMF0S=M0T
49 4 45 nm0 TNrmGrpM0T=0
50 21 49 syl SNrmGrpTNrmGrpFSGrpHomTXVM0T=0
51 48 50 eqtrd SNrmGrpTNrmGrpFSGrpHomTXVMF0S=0
52 simpl1 SNrmGrpTNrmGrpFSGrpHomTXVSNrmGrp
53 3 33 nm0 SNrmGrpL0S=0
54 52 53 syl SNrmGrpTNrmGrpFSGrpHomTXVL0S=0
55 54 oveq2d SNrmGrpTNrmGrpFSGrpHomTXV+∞𝑒L0S=+∞𝑒0
56 pnfxr +∞*
57 xmul01 +∞*+∞𝑒0=0
58 56 57 ax-mp +∞𝑒0=0
59 55 58 eqtrdi SNrmGrpTNrmGrpFSGrpHomTXV+∞𝑒L0S=0
60 51 59 breq12d SNrmGrpTNrmGrpFSGrpHomTXVMF0S+∞𝑒L0S00
61 43 60 mpbiri SNrmGrpTNrmGrpFSGrpHomTXVMF0S+∞𝑒L0S
62 20 42 61 pm2.61ne SNrmGrpTNrmGrpFSGrpHomTXVMFX+∞𝑒LX
63 62 adantr SNrmGrpTNrmGrpFSGrpHomTXVNF=+∞MFX+∞𝑒LX
64 simpr SNrmGrpTNrmGrpFSGrpHomTXVNF=+∞NF=+∞
65 64 oveq1d SNrmGrpTNrmGrpFSGrpHomTXVNF=+∞NF𝑒LX=+∞𝑒LX
66 63 65 breqtrrd SNrmGrpTNrmGrpFSGrpHomTXVNF=+∞MFXNF𝑒LX
67 1 nmocl SNrmGrpTNrmGrpFSGrpHomTNF*
68 1 nmoge0 SNrmGrpTNrmGrpFSGrpHomT0NF
69 ge0nemnf NF*0NFNF−∞
70 67 68 69 syl2anc SNrmGrpTNrmGrpFSGrpHomTNF−∞
71 67 70 jca SNrmGrpTNrmGrpFSGrpHomTNF*NF−∞
72 xrnemnf NF*NF−∞NFNF=+∞
73 71 72 sylib SNrmGrpTNrmGrpFSGrpHomTNFNF=+∞
74 73 adantr SNrmGrpTNrmGrpFSGrpHomTXVNFNF=+∞
75 15 66 74 mpjaodan SNrmGrpTNrmGrpFSGrpHomTXVMFXNF𝑒LX